was positive. No other pathogens were detected in her blood, urine, sputum, bronchoalveolar lavage, or thoracentesis fluid.

Empiric treatment in patients with pandemic (H1N1) 2009 should be considered in those seeking treatment for influenza-like symptoms, especially in the setting of sick contacts with respiratory illnesses. Rapid influenza tests, respiratory fluorescent antibody tests, and viral cultures may not provide a diagnosis. An RT-PCR for pandemic (H1N1) 2009 may be needed to provide a diagnosis.

Natalie C. Klein, Azfar Chak, Marilyn Chengot, Diane H. Johnson, and Burke A. Cunha

Author affiliations: Winthrop-University Hospital, Mineola, NY 11501, USA. Infectious Disease Division, Winthrop-University Hospital, Mineola, NY 11501, USA; and State University of New York School of Medicine, Stony Brook, New York, USA

DOI: 10.3201/eid1601.090930

References


Address for correspondence: Burke A. Cunha, Infectious Disease Division, Winthrop-University Hospital, Mineola, NY 11501, USA.

From July 2004 through January 2005, to look for the virus in blood and saliva, we conducted the study reported here, an HHV-8 survey at the same blood bank. A total of 577 volunteer blood donors (431 men and 146 women), mean age 39 years (range 17–76 years), were enrolled at the Hemotherapy Service, Hospital of Infectious Diseases “Francisco Javier Muñiz.” The protocol was approved by the Teaching and Research Committee.

Serum and whole blood were collected from all 577 donors, and paired blood–saliva samples were obtained from 394. Serum samples were routinely tested for hepatitis B and C viruses, HIV, human T-lymphotropic viruses I and II, Treponema pallidum, Brucella spp., and Trypanosoma cruzi; results were used to determine associations between HHV-8 and these agents. Specimens were stored at −20°C until serologic and molecular investigation at the Virology Department, National Institute of Infectious Diseases.

Serologic screening for HHV-8 infection was performed by indirect immunofluorescence assay by using lytically induced cells; serum samples were diluted 1:40 (8). Then 45 blood and 39 paired blood–saliva samples from HHV-8-seroreactive donors were investigated for viral genome by open reading frame 26 nested PCR. DNA was purified from 0.3 mL of whole blood by using FlexiGene DNA Kit (Qiagen, Gmbh, Hilden, Germany); concentrations and quality were measured with a UV spectrophotometer, and 1 μL was used for PCR. The QIAamp DNA Mini Kit (Qiagen, Gmbh.) was used to obtain DNA from 0.2-mL saliva samples. Crude pellets were resuspended in 20μL of Tris EDTA, pH 8, then 5 μL were added to the PCR. Quality of DNA isolated from negative PCR samples was tested by amplifying the human housekeeping gene β-globin. In addition, inhibitors were investigated by add-
testing by means of associations between variables were (positive/total). When necessary, the confidence intervals (CIs), and proportions expressed as percentages, 95% con
tentions of DNA from body cavity–based detected by our nested PCR, previ-
osing the minimum viral DNA amount

instances is consistent with previously reported that saliva samples were also positive these patients could have received HIV patients (7.79%) of the 577 blood donors; assay results were obtained for 45 (7.9%) of the 577 blood donors; seroprevalence was independent of gender (p = 0.8) and increased with age (odds ratio 1.04, 95% CI 1.01–1.07, p = 0.028). No association was found between HHV-8 and seroreactivity to the infectious agents tested (p = 0.3438). HHV-8 DNA was found in 3 seroreactive blood donors: 1 in saliva only and 2 in blood and saliva. Of the 45 HHV-8 seropositive samples, 38 were nonreactive to any infectious agents tested in the blood bank. One donor was seroreactive for hepatitis B.

In summary, we found HHV-8 in blood and saliva of blood donors even in an area where the virus is not endemic. Seroprevalence for HHV-8 was similar to that previously reported (8). Also, low viral loads might be undetectable by PCR but high enough to cause an infection with usual volumes of blood used in transfusions (9), especially when the hemoderivatives are given to immunocompromised recipients. This study was done in a blood bank from a hospital for infectious diseases in which the recipient population consisted of numerous HIV patients (10). It is a concern that these patients could have received blood infected with HHV-8. The fact that saliva samples were also positive is consistent with previously reported findings (1,2) and might indicate that the virus is active at a site from which samples are easier to obtain and in which the virus easier to detect than the bloodstream. This study provides further evidence that blood transfection carries a potential risk for HHV-8 infection, even in areas where its prevalence is low.

Acknowledgment
We thank Sara Vladimirska for statistical support.

Celeste L. Pérez,
Mónica I. Tous, Norma Zala,
and Sofía Camino

Author affiliations: Administración Nacional de Laboratorios e Institutos de Salud, Buenos Aires, Argentina (C.L. Perez, M.I. Tous); and Hospital de Enfermedades Infecciosas “Francisco J Muñiz,” Buenos Aires (N. Zala, S. Camino).

DOI: 10.3201/eid1601.090893

References


Address for correspondence: Celeste L. Pérez, Tissue Culture Service, Virology Department, National Institute of Infectious Diseases, ANLIS “Dr. Carlos G Malbrán,” Av Velez Sársfield 563-C1281 AFI, Buenos Aires, Argentina; email: cperez@anlis.gov.ar

Letters

Letters commenting on recent articles as well as letters reporting cases, outbreaks, or original research are welcome. Letters commenting on articles should contain no more than 300 words and 5 references; they are more likely to be published if submitted within 4 weeks of the original article’s publication. Letters reporting cases, outbreaks, or original research should contain no more than 800 words and 10 references. They may have 1 Figure or Table and should not be divided into sections. All letters should contain material not previously published and include a word count.