in Mexico (6) and the United States (7). In the United States, several pregnant women died, and the hospitalization rate for pregnant women was 4× higher than for the general population (8). Despite a fairly high birth rate on Reunion Island (19 births/1,000 population), our small series does not support these findings.

During the epidemic (July 20–September 20, 2009), acute respiratory infections, including presumed cases of pandemic (H1N1) 2009, accounted for 20.6% of the total case load of physicians on the island. The attack rate was ≈12.9% among the 810,000 inhabitants, and 8 deaths among persons with confirmed infection were reported. Therefore, the minimal overall death rate was ≈7.5 per million population and the case-fatality rate, 1 per 10,000 population.

Bernard-Alex Gaüzère, Denis Malvy, Laurent Filleul, Duksha Ramful, Marie-Christine Jaffar-Bandjee, Mourin El Bock, Khaled Ezzedine, and David Vandroux

Author affiliations: Centre Hospitalier Régional de la Réunion, Saint-Denis, France (B.-A. Gaüzère, D. Ramful, M.-C. Jaffar-Bandjee, D. Vandroux); Université Bordeaux 2, Bordeaux, France (D. Malvy, K. Ezzedine); Cellule de l’Institut de Veille Sanitaire en Région, Saint Denis (L. Filleul); and Centre Hospitalier Régional de la Réunion, Saint-Benoît, France (M. El Bock)

DOI: 10.3201/eid1701.100467

References

Address for correspondence: Bernard-Alex Gaüzère, CHR Réunion, Réanimation CH Félix Guyon, Saint-Denis 97405, Réunion; email: bernard.gauzere@chr-reunion.fr

Crimean-Congo Hemorrhagic Fever Virus, Northeastern Greece

To the Editor: Crimean-Congo hemorrhagic fever virus (CCHFV) causes a disease in humans that is characterized by fever and hemorrhagic manifestations, with death rates up to 30%. Humans are infected through tick bites or contact with the viremic blood of patients or livestock. CCHFV belongs to the genus Nairovirus (family Bunyaviridae), which contains 7 serogroups: CCHFV, Dugbe virus, Hughes virus, Sakhalin virus, Dera Ghazi Khan virus, Qalyub virus, and Thiafora virus.

A CCHFV strain, AP92, was isolated from Rhipicephalus bursa ticks collected in 1975 from goats in Vergina, a village in northern Greece (1). Seroprevalence among Vergina residents was 6.1% (2). During 1981–1988, the seroprevalence among 3,388 persons in Greece was 1.1% (range 0%–9.6%) (3). The first Crimean-Congo hemorrhagic fever case in Greece was reported in 2008, when a woman died in Komotini in northeastern Greece (4). The causative strain (Rodopi) differs from strain AP92 (5).

To determine the prevalence of CCHFV antibodies in the human population of northeastern Greece, serum samples were collected prospectively during November 2008–April 2009 from 1,178 residents of Drama, Kavala, Xanthi, Rodopi, and Evros prefectures. A predefined number of participants were enrolled in the study on the basis of prefecture population. Participants were selected randomly among persons who were referred to health care settings for blood testing, regardless of reason for testing, and regardless of CCHFV risk factors. Oral consent was given by all participants. A questionnaire was completed concerning age, sex, occupation, place of residence, history of tick bite, symp-
toms after the bite, contact with animals, and any other situation related with increased risk for tick bite. All age groups were included (range 0–97 years, mean ± SE age 53.2 ± 0.63).

Serum samples were tested for CCHFV immunoglobulin (Ig) G by ELISA (Vektor-Best, Koltsovo, Novosibirsk, Russia). The data were analyzed by using Stata Special Edition 9 (StataCorp LP, College Station, TX, USA). Multivariate logistic regression modeling was adopted to identify potential risk factors for acquisition of CCHFV infection. Odds ratios (ORs) with 95% confidence intervals (CIs) were obtained. p values <0.05 were considered significant.

In total, 37 (3.14%) of 1,178 persons were positive for CCHFV by IgG. The mean ± SE age of seropositive and seronegative persons was 68.7 ± 2.54 years (range 0–87 years) and 55.6 ± 0.79 years (range 0–97 years). The female: male ratio was 1.6 among tested persons and 0.6 among seropositive persons. Seroprevalence differed among prefectures: Rodopi, where the fatal Crimean-Congo hemorrhagic fever case was observed, and Evros had the highest values (4.95% and 4.49%), Drama and Xanthi the lowest (1.34% and 1.09%), and no IgG-positive person was found in Kavala. The distribution of regions where IgG-positive persons were found is presented in the Figure. Seropositive persons lived in rural areas at an altitude of 10m to 270 m; however, this factor was not significant (p = 0.358).

Crude analysis showed that age, sex, prefecture, occupation, contact with goats and sheep, slaughtering, and history of tick bite were significantly associated with seropositivity. Multivariate analysis showed that the following variables were significant risk factors for acquisition of CCHFV infection: age (OR 1.05, 95% CI 1.02–1.08; p = 0.002), residence in Rodopi prefecture (with Drama prefecture as reference category) (OR 6.55, 95% CI 1.36–31.60; p = 0.019), contact with goats (OR 3.40, 95% CI 1.22–9.43; p = 0.019), history of slaughtering (OR 2.53, 95% CI 1.01–6.45; p = 0.048), and history of tick bite (OR 2.51, 95% CI 1.03–6.15; p = 0.044).

When we compared our results with those of Antoniadis et al. (3), marked differences were seen: seroprevalence in Rodopi, Evros, Xanthi, and Drama was 0.5%, 0%, 1.2%, and 0%, respectively, compared with 4.95%, 4.49%, 1.09%, and 1.34% in the present study, which suggests that during the past 20 years CCHFV was introduced in some areas in Greece or increased its circulation in others. Climatic and environmental changes and infested livestock movements (legal or illegal) in a habitat suitable for ticks might play a role in the current situation (6).

Further studies are necessary to estimate the seroprevalence in the whole country and detect disease- endemic foci of the disease. In addition, surveys for CCHFV in Ixodid ticks are necessary to enable the construction of risk maps and risk assessment analysis.

Acknowledgments

We thank clinicians and nurses for collecting samples, and participants for providing blood samples and completing the questionnaire. We are grateful to Andreas Tsatsaris for technical advice on producing the map, and to Elpida Gavana and Antonis Maragos for excellent technical assistance.

The work was funded by the Hellenic Centre for Diseases Control and Prevention.

Anna Papa, Evangelia Tzala, and Helena C. Maltezou

Author affiliations: Aristotle University of Thessaloniki, Thessaloniki, Greece (A. Papa); and Hellenic Centre for Diseases Control and Prevention, Athens, Greece (E. Tzala, H.C. Maltezou)

DOI: 10.3201/eid1701.100073

References

2. Antoniadis A, Casals J. Serological evidence of human infection with

3. Antoniadis A, Alexiou-Daniel S, Malisios N, Doutsos I, Polyzoni T,
Leduc JW, et al. Seroepidemiological survey for antibodies to

4. Papa A, Maltezou HC, Tsiodras S, Dalla VG, Papadimitriou T,

5. Papa A, Dalla V, Papadimitriou E, Kartalis GN, Antoniadis A. Emergence

6. Maltezou HC, Papa A, Tsiodras S, Dalla V, Maltezos E, Antoniadis A.
Crimean-Congo hemorrhagic fever in Greece: a public health perspective.

Address for correspondence: Anna Papa, Department of Microbiology,
Medical School Aristotle University of Thessaloniki, 54124,
Thessaloniki, Greece; email: annap@med.auth.gr

Class D OXA-48
Carbapenemase in Multidrug-Resistant Enterobacteria,
Senegal

To the Editor: Class D OXA β-lactamases are characterized as pencillinases
that can hydrolyze oxacillin and cloxacillin and are poorly inhibited
by clavulanic acid and EDTA. OXA-48 is one of the few members of
this family to possess notable carbapenem-hydrolyzing activity (1). First
described in 2004 in Turkey, OXA-48 has recently started to spread in
Europe and the Middle East (2). We report the recent emergence of the plasmid-encoded
bla\textsubscript{OXA-48} gene in multidrug-resistant Enterobacteriaceae recovered
from patients in Dakar, Senegal, in hospitals and in the community.

From November 2008 through October 2009, 11 Enterobacteriaceae
isolates (8 Klebsiella pneumoniae, 1 Escherichia coli, 1 Enterobacter cloa-
cae, and 1 Enterobacter sakazakii) with reduced susceptibility to imipen-
em were identified at the Institut Pasteur (Dakar, Senegal). Antibacterial
drug susceptibility was determined by the disk diffusion method and
interpreted according to the European Committee on Antimicrobial Suscep-
tibility Testing guidelines (www.eucast.org). Nine isolates were resistant
to expanded-spectrum cephalosporins and also to other antibacterial drug
classes.

The isolates were recovered from 6 patients with urinary tract infections,
4 patients with surgical infections, and 1 patient with omphalitis. Nine infec-
tions were hospital acquired (Le Danec and Principal Hospitals). Because
the patients died before antibacterial drug susceptibility testing could
be completed, all 5 patients with surgical infections or omphalitis received
only empirical therapy with amoxicillin/clavulanic. One patient with a noso-
comial urinary tract infection caused by a co-trimoxazole–susceptible strain
was successfully treated with this antibacterial agent. The antibacterial
drug regimens of the remaining 4 patients were not known, and they were
lost to follow-up. We determined the MICs of imipenem, meropenem, and
ertapenem by using the Etest method (AB Biodisk, Solna, Sweden), which
showed that 9 isolates were susceptible to imipenem and meropenem
but either intermediately susceptible or resistant to ertapenem (Table). The
2 imipenem-nonsusceptible isolates were susceptible or intermediately
susceptible to meropenem, and both were resistant to ertapenem.

We used previously described PCRs (1,3–7) to screen for carbapenem-
hydrolyzing β-lactamase genes (bla\textsubscript{VIM}, bla\textsubscript{IMP}, bla\textsubscript{PER}, and
bla\textsubscript{OXA-48}), as well as plasmid-encoded bla\textsubscript{CTX-M1},
bla\textsubscript{MET}, bla\textsubscript{OXA-1}, and bla\textsubscript{TEM} β-lactamase genes;
the aac(6\prime)-Ib aminoglycoside resistance gene; the quinolone resistance
genes qnr\textsubscript{A,B,S}; the tetracycline resistance genes tet\textsubscript{A,B,D}; and
class 1 integron. The bla\textsubscript{OXA-4867}, bla\textsubscript{IMP},
and aac(6\prime)-Ib genes and the variable region of class 1 integron
were then characterized by direct DNA sequencing of the PCR products.

The genetic environment of the bla\textsubscript{OXA-48} gene was investigated
by PCR and DNA sequencing of the PCR products. bla\textsubscript{OXA-48} was
present in all 11 isolates. bla\textsubscript{VIM}, bla\textsubscript{IMP}, and bla\textsubscript{PER} were not
detected. The qnr genes were present in 7 isolates resistant to ciprofloxacin.
The aac(6\prime)-Ib-cr variant was present in 7 isolates resistant to gentamicin,
tobramycin, and ciprofloxacin.

The 9 isolates resistant to expanded-spectrum cephalosporins all harbored
the bla\textsubscript{CTX-M-15} gene. The E. coli isolate also harbored the plasmid-encoded
bla\textsubscript{SHV} gene ACT-1; bla\textsubscript{OXA-1}, bla\textsubscript{TEM},
and aac(6\prime)-Ib-cr were associated in 6 isolates. Long-range
PCR showed that 3 genes were present in the same “multidrug resistance region,”
as described in Senegal (6). Positive conjugation experiments with
sodium azide–resistant E. coli J53 showed through PCR results,
plasmid DNA extraction, and antibiogram patterns of the obtained transcon-
jugants that bla\textsubscript{OXA-48} was located on a 70-kb self-conjugative plasmid.

The genetic environment of the bla\textsubscript{OXA-48} was then investigated by PCR
with primers specific for insertion sequence IS\textsubscript{1999} and for the 5\prime
part of the IS\textsubscript{1999} (1). bla\textsubscript{OXA-48} was found to be
part of a Tn\textsubscript{1999} composite transposon composed of 2 copies of the insertion
sequence IS\textsubscript{1999}, as reported (2). Further sequencing of the IS\textsubscript{1999} located
upstream of the bla\textsubscript{OXA-48} showed that it was consistently truncated by the
insertion sequence IS\textsubscript{1999}, as initially described in Turkey and more recently in
Lebanon and Egypt (2,8).

XbaI pulsed-field gel electrophoresis was then used to study the genetic
relatedness of the 8 K. pneumoniae