
To assess population diversities among 81 strains 
of fungi in the genus Fonsecaea that had been identifi ed 
down to species level, we applied amplifi ed fragment-
length polymorphism (AFLP) technology and sequenced 
the internal transcribed spacer regions and the partial cell 
division cycle, β-tubulin, and actin genes. Many species of 
the genus Fonsecaea cause human chromoblastomycosis. 
Strains originated from a global sampling of clinical and 
environmental sources in the Western Hemisphere, Asia, 
Africa, and Europe. According to AFLP fi ngerprinting, 
Fonsecaea isolates clustered in 5 groups corresponding 
with F. pedrosoi, F. monophora, and F. nubica: the latter 
2 species each comprised 2 groups, and F. pedrosoi 
appeared to be of monophyletic origin. F. pedrosoi was 
found nearly exclusively in Central and South America. F. 
monophora and F. nubica were distributed worldwide, but 
both showed substantial geographic structuring. Clinical 
cases outside areas where Fonsecaea is endemic were 
probably distributed by human migration.

The genus Fonsecaea comprises etiologic fungal agents 
of human chromoblastomycosis (1–3), a chronic 

cutaneous and subcutaneous infection characterized by 
slowly expanding nodules that eventually lead to emerging, 

caulifl ower-like, mutilating and disfi guring eruptions. 
Infection proceeds with muriform cells in tissue provoking 
a granulomatous immune response. In areas where it 
is endemic, disease incidence is high. Yegres et al. (4) 
and Yëgues-Rodriguez et al. (5) noted a frequency of 16 
cases/1,000 populaAtion under arid climatic conditions 
in rural communities of Venezuela; chromoblastomycosis 
in that region is caused mainly by Cladophialophora 
carrionii. In contrast, Fonsecaea spp. are prevalent in 
humid tropical climates. Esterre et al. (6) reported 1,343 
cases of chromoblastomycosis from Madagascar, 61.8% 
of which were caused by Fonsecaea spp. Kombila et al. 
(7) reported 64 cases in Gabon (equatorial Africa), all 
caused by Fonsecaea spp., and Silva et al. (8) cited 325 
cases in the Amazon region of Brazil, 98% of which had 
Fonsecaea spp. as the etiologic agent. In Sri Lanka, 94% of 
71 chromoblastomycosis cases were caused by Fonsecaea 
spp. (9).

Fonsecaea contains anamorphic ascomycetes 
belonging to the family Herpotrichiellaceae (order 
Chaetothyriales), which includes black yeasts and 
relatives (10–12). The genus comprises 3 sibling species: 
F. pedrosoi, F. monophora, and F. nubica, each of which 
has pathogenic potential (10,13,14). Infection process and 
routes of dispersal are insuffi ciently clarifi ed. Humans 
presumably acquire the infection after being pricked 
by contaminated thorns or wood splinters, but some 
agents are substantially more clinically prevalent than 
their predominantly (hitherto unnamed) environmental 
counterparts (15), which indicates that infection is not a 
random process. In many published case reports, etiologic 
agents were referred to as Phialophora pedrosoi or 
identifi ed with the obsolete name F. compacta, now known 
to be a mutant F. pedrosoi (9,13,16). Strains are no longer 
accessible for molecular verifi cation. Hence, no data are 
available on the epidemiology of the species as defi ned by 
sequence data.
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Phylogenetically, Fonsecaea spp. agents of chromo-
blastomycosis are fl anked by nonpathogenic species (10) 
growing on plant debris. Discovery of natural habitat and 
source of infection by entities emerging on the human 
host is essential for understanding the evolution of 
pathogenicity. We present an amplifi ed fragment-length 
polymorphism (AFLP) DNA fi ngerprinting study of a 
worldwide collection of clinical isolates that were identifi ed 
as Fonsecaea spp. by state-of-the-art sequencing methods, 
supplemented with environmental isolates of the same 
species. The AFLP technique is a powerful method for 
discrimination between fungal species and for providing 
high-resolution fi ngerprinting data within species (17–19).

Materials and Methods

Fungal Strains and Culture Conditions
We studied 81 isolates representing the 3 currently 

recognized Fonsecaea spp. Geographic origins and hosts 
of the strains are listed in Table 1; the set include reference 
strains from the Centraalbureau voor Schimmelcultures 
(CBS-KNAW Fungal Biodiversity Centre, Utrecht, the 
Netherlands) and fresh isolates from patients and from the 
environment. Stock cultures were maintained on slants of 
2% malt extract agar and oatmeal agar at 24°C.

DNA Extraction and Identifi cation
Approximately 1 cm2 of 14- to 21-day-old cultures 

were transferred to 2 mL Eppendorf tubes containing 
400 μL TEx buffer (Sigma-Aldrich, Zwijndrecht, the 
Netherlands), pH 9.0 (100 mmol Tris, 40 mmol Na-EDTA) 
and glass beads (Sigma G9143, Sigma-Aldrich). The 
fungal material was homogenized with a MoBio vortex 
(Bohemia, New York, USA) for 1 min. Subsequently, 120 
μL of a 10% sodium dodecyl sulfate solution and 10 μL 
proteinase K (10 mg/mL, Sigma-Aldrich) were added and 
incubated for 30 min at 55°C; the mixture was vortexed for 
3 min. After addition of 120 μL of 5M NaCl and 1/10 vol 
10% cetyltrimethylammonium bromide solution (Sigma-
Aldrich), the material was incubated for 60 min at 55°C. 
Then the mixture was vortexed for 3 min. Subsequently, 
700 μL SEVAG (24:1, chloroform: isoamyl alcohol) was 
added, mixed carefully, and centrifuged for 5 min at 4°C 
at 20,400 × g. The supernatant was transferred to a new 
Eppendorf tube with 225 μL 5M NH4 acetate (Sigma-
Aldrich), mixed carefully by inverting, incubated for 
30 min on ice water, and centrifuged again for 5 min at 
4°C at 20,400 × g. The supernatant was then transferred 
to another Eppendorf tube with 0.55 vol isopropanol and 
centrifuged for 5 min at 20,400 × g. Finally, the pellet was 
washed with 1 mL ice cold 70% ethanol. After drying at 
room temperature, it was resuspended in 48.5 μL TE buffer 
(Sigma-Aldrich) (Tris 0.12% wt/vol, Na-EDTA 0.04% wt/

vol) and 1.5 μL of RNase (Sigma-Aldrich) and incubated in 
37°C for 20–30 min. Quality of genomic DNA was verifi ed 
on agarose gel. Species were identifi ed on the basis of 
internal transcribed spacer (ITS), partial cell division cycle 
(CDC42), β-tubulin (BT2), and ACT sequences (10–14).

AFLP Fingerprinting
We followed a protocol provided by the manufacturer 

(Applied Biosystems, Nieuwerkerk aan de IJssel, the 
Netherlands), with some minor modifi cations (20–23). 
Analyses were performed with 100–200 ng DNA.

Restriction and Ligation of Adaptors
Two μL of DNA (100 ng/μL) was added to 9 μL 

restriction and ligation mixture (1.1 μL T4 DNA ligase 
buffer [Applied Biosystems]), 1.1 μL M NaCl, 2 U MseI 
endonuclease, 10 U EcoRI endonuclease (New England 
Biolabs, Ipswich, UK), 30 U T4 DNA ligase, 1 μL MseI-
adaptor, 1 μL EcoRI-adaptor, and 3 μL dH20 and incubated 
at 37°C for 2.5 h. Subsequently, each restriction/ligation 
reaction was diluted ≈3× by adding 25 μL demineralized 
water.

Preselective and Selective PCR
In preselective PCR, 2 μL of diluted restriction/ligation 

product was added to 7.5 μL of AFLP core mix (Applied 
Biosystems), 0.25 μL of the EcoRI core sequence (5′-
GAC TGC GTA CCA ATTC-3′), and 0.25 μL of the MseI 
core sequence (5′-GAT GAG TCC TGA GTAA-3′). The 
mixture was amplifi ed in an iCycler (Bio-Rad, Hercules, 
CA, USA) under the following conditions: 2 min at 72°C, 
followed by 20 cycles of 20 s at 94°C, 30 s at 56°C, and 
2 min at 72°C. Each preselective PCR was diluted 2× by 
adding 10 μL of dH2O. In selective PCR, 1.5 μL of diluted 
preselective PCR products was mixed with 8.5 selective 
PCR mix containing 0.5 μL EcoRI-AC (labeled with 
FAM [6-carboxy fl uorescein]), 0.5 μL MseI-A, and 7.5 μL 
AFLP core mix (Applied Biosystems). The selective PCR 
conditions were cycling for 2 min at 94°C, followed by 10 
cycles of 20 s at 94°C and 30 s at 66°C (decreasing 1°C 
with each subsequent cycle), and a fi nal extension of 2 min 
at 72°C. This sequence was followed by 25 cycles of 20 
s at 94°C, 30 s at 56°C, and 2 min at 72°C, and a fi nal 
incubation of 30 min at 60°C.

AFLP Analysis
FAM-labeled products were prepared for analysis in an 

ABI PRISM 377 Genetic Analyzer (Applied Biosystems) 
as follows: the selective PCR products were cleaned with 
Sephadex G-50, and selective PCR products were mixed 
with LIZ 500 in the new plate by several times pipetting 
(fi rst by preparing master mix [8.7 μL demineralized 
water plus 0.3 μL Liz 500], then mixing this with 1.0 μL 
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of selective PCR product by pipetting). The total volume 
was adjusted to 10 μL with dH2O. Denaturation was done 
at 95°C for 5 min, and then the reaction was snap-cooled 
on ice water. The LIZ 500 internal size standard in each 
sample was used for normalization of the fi ngerprint pattern 
according to the instruction manual. The densitometric 
curves were analyzed with BioNumerics software package 
(version 4.61, Applied Maths, Kortrijk, Belgium), by 
using the cosine similarity coeffi cient and the unweighted 
pair group method with arithmetic means cluster analysis. 
Statisti  cal reliability of the cluster was investigated by 
using a cophenetic value, which calculates the correlation 
between the calculated and the dendrogram-derived 
similarity. Subdivisions in clusters were checked visually 
if they were supported by the banding patterns.

Results
Profi les of 81 strains were generated with the EcoRI-

AC + MseI-A PCR adaptors. Fingerprints contained ≈60–
70 bands in a 50–500-bp range. Another selective PCR with 
EcoRI core sequence+C and MseI core sequence+A primer 
combination used elsewhere in related fungi (24) resulted 
in nonscorable fi ngerprints because of amplifi cation of too 
many or only faint bands. Dendrograms derived from the 
AFLP banding patterns of Fonsecaea spp. were generated 
by using the unweighted pair group method with arithmetic 
means cluster analysis (online Appendix Figure, www.
cdc.gov/EID/17/3/464-appF.htm). At >62.50% similarity, 
3 main clusters were found that matched with existing 
species on the basis of multilocus sequence analysis (ITS, 
CDC42, BT2, and ACT1), i.e., F. pedrosoi, F. monophora, 
and F. nubica. At an automatic cutoff value option set at 
<62.5% similarity, the F. monophora and F. nubica clusters 
were subdivided in 2 evident groups each, leading to a total 
of 5 clusters (1–5) interpreted as populations. Clusters 1 
and 2 matched with F. nubica, clusters 3 and 4 with F. 

monophora, and cluster 5 with F. pedrosoi. Individual 
bands varied within the profi les, but further subclustering 
was limited, e.g., in a slightly deviating derived subclade in 
population 5. The groups defi ned above by AFLP analysis 
are interpreted as populations (1–5) in the text below. In 
population 5, some strains were nearly 100% identical, e.g., 
CBS 122341, 122343, 122345, and 122349, all originating 
from patients with chromoblastomycosis in Mexico City, 
Mexico (online Appendix Figure; online Appendix Table, 
www.cdc.gov/EID/17/3/464-appT.htm).

We determined the geographic distributions of the 
5 main populations of Fonsecaea strains (Figure). Areas 
endemic for Fonsecaea, judging from the literature, are 
in tropical and subtropical climate zones. Population 
1 comprised a cluster of F. nubica strains originating 
from humans with chromoblastomycosis in Guangdong, 
People’s Republic of China. Population 2 of the same 
species comprised 4 strains, 2 of which originated from 
humans with chromoblastomycosis in South America, 1 
from France, and 1 with unknown origin. The profi les were 
too different to trace to any clonal identity. Population 3 
(F. monophora) comprised 15 strains, most of which 
were isolated from humans with chromoblastomycosis in 
South America; 1 originated from the United States, and 1 
originated from Haikou in southern China. Two strains were 
isolated from decaying plants in Brazil, and the second US 
strain was derived from a human with a brain infection. Two 
other strains from human brain infections in Brazil and in 
Africa had unique profi les that could not be unambiguously 
linked to any other isolate. Another African strain, from a 
patient with chromoblastomycosis who lived in Spain and 
had acquired the infection 36 years earlier in Guinea (25), 
also had a unique profi le. Population 4 of F. monophora 
comprised 16 strains from Guangdong in southern China, 
and 1 came from Shandong, ≈1,850 km distant. All had 
derived from humans with chromoblastomycosis. A single 
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Figure. Geographic distribution of 
Fonsecaea spp. samples analyzed 
by using amplifi ed fragment-length 
polymorphism. Light pink shading 
indicates zone of clinical Fonsecaea 
spp. endemicity, according to 
published case reports. Sizes of 
pies and numbers reported within 
the pies denote the number of 
strains examined; colors represent 
Fonsecaea spp. populations: orange, 
F. nubica population 1; fuchsia, 
F. nubica population 2; dark blue,
F. monophora population 3; light 
blue, F. monophora population 4; 
yellow, F. pedrosoi population 5.
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sample originated from a patient with a brain infection 
who lived in the United Kingdom (26); whether the patient 
had visited southern China could not be established. In 
population 5 (F. pedrosoi), most strains originated from 
chromoblastomycosis patients in Central and South 
America. Some geographic clustering was visible, i.e., the 
derived group of strains from South America (uppermost 
clade of population 5 in the online Appendix Figure) was 
segregated from those from Central America. Several of 
the strains from South American originated from soil and 
were isolated through mouse passage. One strain from 
an ear of a gazelle in Libya and 1 from a human with 
chromoblastomycosis in the Netherlands could not directly 
be linked to any other strain.

Discussion
AFLP typing is comparable to use of other DNA markers, 

such as random amplifi ed polymorphic DNA, restriction 
fragment-length polymorphism, or microsatellites, in terms 
of time and cost effi ciency, reproducibility, and resolution 
(27). The technique has emerged as a major epidemiologic 
tool with broad application in ecology, population genetics, 
pathotyping, DNA fi ngerprinting, and quantitative trait 
loci mapping (28). AFLP fi ngerprinting is useful for 
the molecular characterization of microorganisms with 
relatively large genomes, including various fungal species 
(18,19,21–23,29,30). In a preliminary experiment that used 
different primer combinations, the combination EcoRI-AC 
+ MseI-A adaptors gave excellent results, yielding readable 
profi les with well-separated bands.

The degree of variation in Fonsecaea appeared to 
differ between species. The major 5 clusters were separated 
at <62.5% similarity, with signifi cant differences in the 
presence of major fragments, several of which were unique 
to individual isolates or subpopulations. Populations 1 and 
2, 3 and 4, and 5 corresponded with species borderlines 
established recently by Najafzadeh et al. (10,14) on the 
basis of multilocus sequencing with ITS, CDC42, BT2, and 
ACT1. Population 5 (F. pedrosoi) varied least at >71.7% 
similarity, with limited reproducible substructure being 
discernable. Nearly all isolates of this species originated 
from South and Central America (Venezuela, Brazil, 
Mexico, Argentina, Puerto Rico, and Uruguay). One 
isolate from a human with chromoblastomycosis in the 
Netherlands was likely to have been imported (13). One 
isolate from a gazelle ear in Libya, northern Africa, was 
the only geographic exception that could not be explained. 
Clusters of strains that could be grouped as being visually 
identical and with similarities >71.7% (online Appendix 
Figure; online Appendix Table) were mostly collected at 
close geographic distance from each other. This fi nding 
suggests that vectors of dispersal for Fonsecaea spp. are 
slow, leading to detectable regional diversifi cation. The 

relatively low degree of variation of F. pedrosoi and 
confi nement to Central and South America indicate a 
founder effect, the species being the most recently emerged 
taxon in Fonsecaea. F. monophora and F. nubica were 
distributed worldwide but were geographically diverse in 
that population 4 of F. monophora was nearly confi ned 
to China, with highly similar profi les (online Appendix 
Figure). One strain of this population 4, CBS 117238, 
originated from a brain infection in a human in the United 
Kingdom; whether this patient had emigrated from China 
could not be determined from the original publication 
(25). F. monophora population 3 was found mainly in the 
Western Hemisphere, particularly in Brazil. Judging from 
the near identity of profi les of strains isolated in 1937 (CBS 
271.37) and in 1999 (CBS 102245) (online Appendix 
Figure), we can conclude that clones are maintained locally 
over decades. The 2 US strains presumably derived from 
immigrants from South America or Central America. 
Population 3 was also found in Africa and in Haikou in 
China, 600 km from Guangdong, where population 4 of 
F. monophora is prevalent. Strains of F. nubica show a 
similar bipartition over Asia and the Western Hemisphere, 
with a prevalently Chinese (population 1) and a prevalently 
Brazilian (population 2) population, and a presumed 
infected immigrant in France. Kawasaki et al. (31,32) 
provided similar data on the basis of restriction fragment-
length polymorphism of mitochondrial DNA, showing that 
Fonsecaea spp. from Japan and China differed consistently 
from isolates from Central and South America.

Nearly all Fonsecaea spp. isolates available in culture 
collections originate from mammals, mostly humans with 
chromoblastomycosis, and were rarely recovered from 
the environment of symptomatic patients despite several 
attempts (33). Occasionally, F. pedrosoi was isolated from 
mice that were euthanized for isolation of black yeasts after 
they had been inoculated with environmental samples (34). 
This information suggests that Fonsecaea spp., particularly 
F. pedrosoi, have a competitive advantage by using this 
enrichment source. Mouse passage proved to be more 
effi cient for environmental isolation of etiologic agents 
of chromoblastomycosis than general methods such as oil 
fl otation (35). The latter technique mostly isolates other 
environmental Fonsecaea spp. that are not known to be 
pathogenic to humans (33).

In humans with chromoblastomycosis, the male:female 
ratio of patients is 63:2. This male preponderance of 97% 
cannot be explained by different exposition rates. Distinct 
male preponderance is also noted in the neurotropic 
relative, Cladophialophora bantiana (G.S. de Hoog, 
unpub. data). Population 3 of F. monophora has a wider 
clinical spectrum than the remaining groups, comprising, 
in addition to chromoblastomycosis, several isolates from 
human brain infection. This population also comprised 
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some isolates from soil and plant debris acquired without 
use of mammal baits. Coexistence of closely interrelated 
entities differing in pathogenicity and virulence seems 
likely in Fonsecaea spp., as was also suggested for black 
yeasts (A.H.G. Gerrits van den Ende et al., unpub. data).

Our data demonstrate that AFLP fi ngerprinting 
is a tool that produces highly reproducible results for 
molecular epidemiology. The use of AFLP showed 
that local Fonsecaea agents of chromoblastomycosis 
seem able to be maintained over 70 years, and therefore 
epidemiologic profi les take the structure of expanding 
clones. By locality, patients are infected by only a limited 
number of genotypes. The fungi disperse slowly, leading to 
appreciable geographic structuring, which ultimately may 
lead to allopatric speciation (diversifi cation resulting from 
geographic barriers). Few environmental strains have been 
recovered during repeated isolation experiments, whereas 
Fonsecaea spp. accumulates substantially in the human 
host. The mechanisms behind their pathology remain 
unexplained.
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