
Since the outbreaks of highly pathogenic avian 
infl uenza (HPAI) subtype H5N1 virus, wild birds have been 
suspected of transmitting this virus to poultry. On January 
23, 2004, the Ministry of Public Health in Thailand informed 
the World Health Organization of an avian infl uenza A 
(H5N1) outbreak. To determine the epidemiology of this viral 
infection and its relation to poultry outbreaks in Thailand from 
2004 through 2007, we investigated how wild birds play a 
role in transmission. A total of 24,712 serum samples were 
collected from migratory and resident wild birds. Reverse 
transcription PCR showed a 0.7% HPAI (H5N1) prevalence. 
The highest prevalence was observed during January–
February 2004 and March–June 2004, predominantly in 
central Thailand, which harbors most of the country’s poultry 
fl ocks. Analysis of the relationship between poultry and wild 
bird outbreaks was done by using a nonhomogeneous birth 
and death statistical model. Transmission effi ciency among 
poultry fl ocks was 1.7× higher in regions with infected wild 
birds in the given or preceding month. The joint presence of 
wild birds and poultry is associated with increased spread 
among poultry fl ocks.

Avian infl uenza is a viral disease of poultry and is 
distributed worldwide. The virus is classifi ed based on 

2 surface proteins, the hemagglutinin (HA) protein (H1–
H16) and the neuraminidase (NA) protein (N1–N9), which 
can be found in numerous combinations (1). All H and N 

subtypes can be found as low pathogenic avian infl uenza 
virus strains in aquatic wild birds, which are assumed to 
be the main reservoirs outside poultry (2,3). Occasionally, 
low pathogenic avian infl uenza virus strains are introduced 
into domestic poultry fl ocks with no clinical signs or only 
mild clinical consequences, but strains carrying the H5 or 
H7 gene can mutate into highly pathogenic avian infl uenza 
(HPAI) strains that cause high death rates in domestic 
poultry (4) and, occasionally, in migratory birds (5,6). 
Because of the devastating effect of HPAI outbreaks in 
commercial poultry, all outbreaks caused by H5 and H7 
subtypes are notifi able (7).

Currently, a HPAI virus strain of subtype H5N1 
is circulating in many countries in Eurasia and Africa, 
causing high death rates in poultry, substantial economic 
losses, and human deaths. The strain was fi rst identifi ed in 
Southeast Asia in 1996 and has since spread to 63 countries 
in Asia, Europe, Africa, and the Middle East (7). Millions 
of domestic poultry died from the effects of the disease 
or from culling efforts to control the spread of the virus 
(1,2,8,9). The spread of the HPAI (H5N1) virus from 
Southeast Asia to Russia, Europe, and Africa was assumed 
to originate from a virus source at Qinghai Lake, People’s 
Republic of China (6,10). Therefore, migratory birds were 
considered to be responsible for long distance dispersal of 
the virus (11–13).

In Thailand, 7 waves of HPAI (H5N1) virus outbreaks 
have occurred since January 2004. Poultry and wild bird 
populations in 1,417 villages in 60 of the 76 provinces 
were affected, and >62 million birds died or were culled 
to prevent further transmission (14–16). Introduction of 
the virus into poultry fl ocks is considered to be possible 
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through infected wild birds. Additional insight on the 
basis of quantitative data into the role of wild birds would 
be necessary to further develop control measures and 
surveillance programs.

Relatively little effort has been made to quantify the 
association between infection in wild birds and outbreaks 
in poultry fl ocks, most likely because of the lack of data on 
infection in wild birds. Recently, a preliminary study was 
carried out that analyzed the prevalence of HPAI (H5N1) 
infection in wild birds in Thailand (14). In that study, 6,263 
pooled surveillance samples from wild birds in Thailand, 
collected from January 2004 through December 2007, 
were tested for evidence of infection. Testing indicated 
that prevalence patterns in wild birds mirrored outbreaks 
among poultry; however, the association was not proven 
or quantifi ed. We studied extensive data on 24,712 wild 
birds, sampled and analyzed from 2004 through 2007 in 
Thailand, to quantify the possible effect of infection in wild 
birds on the spread of the infection among poultry fl ocks.

Materials and Methods

Data Collection
Data about subtype H5N1 infections in wild bird 

populations were provided by the National Institute of 
Animal Health of Thailand, Regional Veterinary Research 
and Development Centers, the Veterinary Science faculty 
of Mahidol University, and the Department of Livestock 
Development, Thailand. A total of 24,712 wild bird samples 
were collected from January 2004 through December 
2007. During 2004–2006, sampling was part of a general 
countrywide surveillance program; in 2007, sampling was 
targeted specifi cally at areas where outbreaks in poultry 
had occurred.

Sampling methods have been described previously 
(14,16,17). Wild birds were either trapped by using 
baited traps, hand nets, or mist nets, or shot. Tracheal/
oropharyngeal swabs and cloacal swabs of live birds and 
bird carcasses were collected from active surveillance 
(sampling of healthy wild birds) and passive surveillance 
(sampling of sick or dead birds). Swab samples were 
collected in viral transport media, stored at 4oC, and 
shipped to the laboratory, where they were stored at −80oC 
until further analysis could be done.

Virus Detection
Methods used for antigen detection have been 

described by Tiensin et al. (16) and Siengsanan et al. (14). 
Supernatants from homogenized tissue and swab samples 
were fi ltrated and inoculated in 11-day-old embryonated 
chicken eggs or MDCK cell cultures. After incubation 
at 37oC for 3 days, allantoic fl uid was harvested. The 
inoculated MDCK cell culture was observed daily for 

cytopathic effect, and supernatant fl uid was harvested by 
day 4, even if no cytopathic effect was observed. Viruses 
were initially identifi ed in allantoic fl uids or culture 
supernatants by the HA assay according to World Health 
Organization recommendations (14). Negative samples 
were inoculated 2 additional times in embryonated chicken 
eggs before specimens were confi rmed as negative.

RNA from positive samples acquired from virus 
culture was extracted by using a viral RNA extraction 
kit (QIAGEN, Valencia, California, USA), according to 
the manufacturer’s instructions. Reverse transcription 
PCR (RT-PCR) was performed by using a 1-step RT-
PCR kit (QIAGEN) to identify the subtype, according to 
the manufacturer’s instructions. Primers for RT of viral 
genome and all HA, NA, and matrix (M) genes for virus 
subtype and infl uenza A virus identifi cation have been 
published elsewhere (14,17–19). PCR products were 
processed with 1% agarose gel electrophoresis and were 
purifi ed by QIAquick PCR purifi cation kit (OIAGEN). 
Sequencing was performed by using the H5 and N1 specifi c 
primers, and sequence data were edited following methods 
previously described (14,17,18).

Statistical Analysis
For each identifi ed bird species, geographic location 

and season were recorded. Bird species were divided into 
3 groups: 1) resident birds (nonmigratory populations), 
present year-round in Thailand; 2) migratory (visitor) 
birds, bird populations moving between Russia or China 
to Thailand during September/October and March/April; 
and 3) breeding visitor birds, which migrate to Thailand for 
breeding in different periods of the year.

To study the relevance between the regions and subtype 
H5N1 outbreaks in wild birds, we divided Thailand into 4 
major geographic regions (northern, northeastern, central, 
and southern) on the basis of the former administrative 
region grouping system used by the Ministry of Interior, 
Thailand. Because of the high number of outbreaks in 
the Central region (14,17,20), it was further divided into 
6 parts: central–northwest, central–north, central–central, 
central–east, central–southeast, and central–southwest. 
On the basis of procedures established by the Thai 
Meteorological Department, the seasons were divided into 
3 periods: summer (March–June), the rainy season (July–
October), and winter (November–February).

Prevalence of HPAI (H5N1) infection and 95% 
confi dence intervals (CIs) were calculated for each group 
of bird species, sampling region, and season. Three 
variables associated with HPAI (H5N1) prevalence were 
analyzed by binary logistic regression. Overall signifi cance 
of the model was assessed by the likelihood ratio χ2 test. 
The goodness-of-fi t was calculated by using the Hosmer-
Lemeshow goodness-of-fi t test. Statistical signifi cance of 
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the regression coeffi cients was tested by using the Wald 
likelihood ratio test. Odds ratios (OR) and respective 
95% CI were calculated. For multiple comparisons, the 
Bonferroni multiple comparison correction was applied to 
demonstrate statistical signifi cance (p<0.001). Statistical 
analysis was performed by using statistical software SPSS 
version 17 (SPSS Inc., Chicago, IL, USA).

Data on outbreaks among poultry were taken from 
Tiensin et al. (16). We used their defi nition of poultry, 
which encompasses all farmed avian species in Thailand, 
including backyard chickens and ducks. Different species 
or types of production systems were not differentiated 
in the data. Using a nonhomogeneous birth model (21), 
we investigated the association between subtype H5N1 
presence in infected poultry fl ocks and wild birds. 
Prevalence data from the 9 different regions were modeled 
independently and conditioned on the number of infected 
birds during the fi rst month of detected infection for each 
region. Time lapse was measured in months from the fi rst 
month infection was detected. To analyze the association 
between presence of subtype H5N1 in wild birds and 
outbreaks in poultry, we pooled data for the 3 wild bird 
groups (resident birds, migratory visitor birds, and breeding 
visitor birds) to increase power.

In most regions, sampling among wild birds was only 
done systematically after a poultry outbreak in that region, 
except in the central–northwest, central–north, and central–
central regions. We could therefore only use the latter 3 
regions to investigate whether the presence of infected wild 
birds was related to the poultry outbreak.

The nonhomogeneous birth model depends on the so-
called reproductive power, which statistically quantifi ed (in 
our setting) the ability of infected poultry fl ocks to spread 
infection to susceptible poultry fl ocks. For the statistical 
model, we used probability distributions from the Burr 
family. Distribution functions Burr XII and Burr III were 
fi tted by using a conditional fi tting procedure (21). For 
every region, we determined whether infected wild birds 
were detected during a particular month. A wild-bird 
infected month was defi ned as a month in which there was 
detection of infected wild birds or which showed wild-bird 
infection in the preceding month. We investigated whether 
wild-bird infection affected the reproductive power for 
the poultry outbreak in the same region. Reproductive 
power for wild-bird infected months was compared with 
that in non–wild-bird infected months for the central–
northwest, central–north, and central–central regions. For 
comparison, we also calculated the reproductive power for 
poultry outbreaks for the 6 other regions of Thailand by 
using previously described methods (22). Model selection 
was done by using Akaike’s Information Criterion (AIC) 
(www.modelselection.org/aic).

Results

Descriptive Statistics
Infected poultry fl ocks and wild birds were found in all 

9 regions during the study period. In online Appendix Figure 
1 (www.cdc.gov/EID/content/17/6/1016-appF1.htm), we 
present the numbers of wild birds sampled per month for 
each of the 9 regions and outbreak data of subtype H5N1 in 
poultry fl ocks. A total of 24,712 wild birds were sampled, 
consisting of 303 species, 64 families, and 20 orders (online 
Appendix Table 1, www.cdc.gov/EID/content/17/6/
1016-appT1.htm). Of these, 192 samples were positive for 
subtype H5N1, resulting in an overall prevalence of 0.78% 
(95% CI 0.67%–0.89%) (online Appendix Table 1). Positive 
samples were found in 35 species of 12 orders (online 
Appendix Table 2, www.cdc.gov/EID/content/17/6/1016-
appT2.htm). Prevalence differed signifi cantly among the 
group of wild bird species (p<0.001), with a prevalence of 
0.187% (95% CI 0.01%–0.21%) in migratory birds (n = 
2,142), 0.829% (95% CI 0.66%–0.94%) in resident birds (n 
= 16,633), and 0.814% (95% CI 0.61%–0.99%) in breeding 
visitor birds (n = 6,143). The highest prevalence of virus-
positive birds was found in resident and breeding visitor 
birds (p<0.001) (online Appendix Table 3, www.cdc.gov/
EID/content/17/6/1016-appT3.htm).

The aggregated data from online Appendix Figure 
1, presented for Thailand as a whole in Figure 1, show a 
marked increase in the number of infected poultry fl ocks 
detected from September through December 2004. A 
relatively high number of wild birds positive for subtype 
H5N1 were detected from January 2004 through May 
2004, before the poultry outbreaks in June 2004. Infections 
in wild birds were consistently detected after the poultry 
outbreaks had ended, except during April and May in 2005, 
2006, and 2007.

The spatial distribution and size classes of infected 
poultry fl ocks, as well as numbers of infected wild birds 
detected, are shown in Figure 2. In 2004 and 2005, infected 
wild birds were reported in the same locations where 
infected poultry fl ocks were found, especially in the central 
region. No infected poultry fl ocks were found in 2006 and 
2007 in these areas. Subtype H5N1 prevalence in wild birds 
differed by sampling location. Central Thailand had the 
highest overall prevalence of 0.9% (95% CI 0.77%–1.03%), 
compared with other regions (p<0.001); the Northwest-
Central region in central Thailand had a signifi cantly higher 
prevalence (p<0.001) (online Appendix Table 3).

The percentages of wild birds positive for subtype 
H5N1 in each season are also shown in online Appendix 
Table 3. Prevalence differed signifi cantly during January 
and February 2004 (7.92%; 95% CI 5.8–10.4; p<0.001) 
and in the summer of 2004 (11.79%; 95% CI 8.7%–15.8%; 
p<0.001), compared with the other seasons.
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Association between Outbreaks in Poultry 
and Infection in Wild Birds

The Burr XII and Burr III distributions each have 5 
parameters. These distributions were used to model the 
observed poultry outbreak data for each of the 9 regions, 
taking into account wild-bird infection. The AIC, when 
we used the Burr XII model to fi t the observed data, was 
5,628.6, substantially lower than that for the Burr III 

distribution, which gave an AIC of 5,829.8. We therefore 
chose the Burr XII distribution to model the data (online 
Appendix Figure 2, www.cdc.gov/EID/content/17/6/1016-
appF2.htm, gives the fi t to the data for all 9 regions). The 
model fi ts the data rather well.

We also fi tted the Burr XII distribution to model the 
observed poultry outbreak data in non–wild-bird infected 
months, leading to an AIC of 5,677.7. Because the model 
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Figure 1. Epidemic curve of the 
number of highly pathogenic 
avian infl uenza (H5N1) virus 
infections in poultry fl ocks and 
percentage of infected wild birds 
during January 2004–December 
2007, Thailand.

Figure 2. Distribution of highly pathogenic avian infl uenza (HPAI) subtype H5N1 infections in poultry fl ocks (top) and wild birds (bottom), 
Thailand. A) 2004, B) 2005, C) 2006, and D) 2007.
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with wild-bird infection has a lower AIC, data clearly show 
that the reproductive power of poultry fl ocks in wild-bird 
infected months was higher than in non–wild-bird infected 
months. Parameter estimates for the model are shown 
in the Table. The log of the proportionality (ln[c3]) is 
0.523, corresponding to a proportionality factor of ≈1.67, 
indicating that the reproductive power in wild-bird infected 
months is ≈1.7× higher than that in non–wild-bird infected 
months (Figure 3, where we give the reproductive power 
for the associated period). In Figure 3, we have also plotted 
the reproductive power for the 6 regions for which we 
could not do the wild-bird related comparison (regions 1 
and 5–9). The reproductive power as a function of time was 
almost indistinguishable from the curve for the non–wild-
bird infected months in regions 2, 3, and 4.

Discussion
We analyzed one of the largest datasets available of 

wild birds sampled for HPAI (H5N1) infection in Thailand, 
a country where several outbreaks of the disease have 
occurred in poultry fl ocks. Our aim was to determine the 
prevalence and distribution of HPAI (H5N1) in wild birds 
and to determine whether an association exists between 
outbreaks in poultry fl ocks and in wild birds within different 
regions in Thailand. We calculated the reproductive power 
in poultry fl ocks, a measure for the ability of a poultry 
fl ock to infect other susceptible poultry fl ocks. Notably, 
reproductive power was 1.7× higher in so-called wild-bird 
infected months, compared with poultry outbreaks in non–
wild-bird infected months, suggesting a strong association 
of spread among poultry fl ocks and the presence of the 
infection in wild birds.

Poultry fl ocks in this study represent several avian 
species, which were considered as a single group with equal 
infectiousness, susceptibility, and other characteristics, 
in the absence of more precise information. Domestic 
ducks, which normally manifest a subtype H5N1 infection 
subclinically, were included in the poultry group. Ducks 
were not sampled according to criteria related to clinical 
signs. Available data do not allow a more differentiated 
analysis.

To quantify the association with outbreaks in poultry, 
we regarded wild birds as 1 group. We can therefore not 
differentiate the quantifi cation of interaction to the level 
of specifi c wild-bird groups. In our additional analyses, 
however, most cases of HPAI (H5N1) infection in wild 
birds were found in resident birds, as compared with 
migratory and breeding visitor birds. Therefore, resident 
wild birds may be responsible for the association that we 
quantifi ed. Our results can possibly be explained by the 
difference in exposure time of the wild birds. We partially 
confi rmed, but more importantly expanded and added detail 
to, the conclusions reached by Siengsanan et al. (14), on the 

basis of pooled samples for a smaller part of the database. 
Bird species seemed to differ in susceptibility for infection. 
In our study, H5N1 virus infection was detected in many 
resident bird species, but we did not have a suffi cient number 
of birds to differentiate in the quantitative analysis between 
different species. Species do differ, however, in terms of 
potential contact to poultry, especially birds considered to be 
peridomestic species of the Columbiformes, Cuculiformes, 
and Passeriformes orders, which are commonly associated 
with poultry environments. Transmission of subtype H5N1 
to poultry populations by this group of resident bird species 
is more likely than transmission by other resident birds, 
including those belonging to the Galliformes, Gruiformes, 
Piciformes, Psittaciformes, and Struthioniformes orders. 
The habitats of these birds are not located near poultry areas. 
Previous experimental studies have shown that infected 
individuals of peridomestic species such as sparrow and 
starling can shed subtype H5N1 after infection, but they die 
quickly (23,24). Therefore, these birds are unlikely to be 
long-term reservoirs but may be a higher risk to poultry than 
other resident bird species. Pigeons were found to be less 
susceptible to severe neurologic signs and death from HPAI 
(H5N1) infection (24). Infected pigeons appeared to shed 
low amounts of virus, thereby limiting virus transmission 
to sentinel birds (23–29). Our data showed a relatively high 
prevalence of HPAI (H5N1) in herons and storks (commonly 
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Table. Parameter estimation of the nonhomogeneous birth model 
using the Burr XII distribution for documenting data on HPAI 
(H5N1) outbreak in poultry, Thailand, 2004–2007 
Parameter Estimate SE
In(b1) 0.772 0.0777 
In(a) 1.142 0.0627 
In(c1) 1.574 0.0746 
In(c2) 0.045 0.0627 
In(c3) 0.523 0.073 
*HPAI, highly pathogenic avian influenza. 

Figure 3. Reproductive powers of highly pathogenic avian infl uenza 
(H5N1)–infected poultry fl ocks in wild-bird infected months and in 
non–wild-bird infected months within different regions of Thailand, 
2004–2007. 
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known as scavengers and hunters of juvenile aquatic birds), 
which suggests that these birds are predominantly infected 
by contact with infected poultry fl ocks.

The prevalence of HPAI (H5N1) infections in resident 
birds was higher in areas with poultry fl ocks. We could not 
determine whether wild birds became infected because of 
spillover from poultry fl ocks or whether wild birds were 
the origin of outbreaks in poultry fl ocks. The association 
we found is not necessarily one of cause and effect. The 2 
populations may have been affected by the same factors that 
increase transmission between fl ocks, e.g., contaminated 
water, movement between poultry fl ocks, or even increased 
transmission through fomites.

Even though data results are from the largest sampling 
effort available, the lack of a clear sampling strategy in the 
collection of wild-bird data precludes a defi nite answer to 
whether poultry fl ocks were infected with HPAI (H5N1) 
from infected wild birds or vice versa. Siengsanan et al. 
(14) suggested that poultry outbreaks precede detection 
of the infection in wild birds, but we have found no 
evidence either for or against that claim, again because 
of the sampling strategy used. One could argue the fact 
that infected poultry fl ocks produce massive amounts of 
virus, which supports the view that infection in wild birds 
is mostly seeded from poultry. A study carried out by 
Bavinck et al. (29) suggested that small backyard fl ocks 
did not contribute to the spread of subtype H7N7 infection 
in the Netherlands during 2003.

Seasonal bird migration, as well as enhanced movement 
and trade of poultry in the winter period caused by major 
social events occurring at the end of the year, may play a role 
in virus spread (30). Our data show increased prevalence 
among wild birds in all winter periods, with the exception 
of 2007 in which neither poultry farm outbreaks nor wild 
bird infections were detected. The actual sources of new 
introductions of HPAI (H5N1) into the commercial poultry 
fl ocks in Thailand could not be elucidated by our analysis.

From January through October 2004, a relatively small 
number of wild-bird samples was collected, compared with 
the number of samples collected from November 2004 to 
December 2007. Selection bias may have occurred during 
this period. Despite a bias in sampling numbers, HPAI 
(H5N1)–infected wild birds were detected during April–
May 2004 just before the onset of the 2004 outbreak, but 
were not observed in that same period during 2005–2007 
despite larger sampling numbers.

Variation in geographic distribution of HPAI (H5N1) 
infections in wild birds was observed over different 
areas. The central region of Thailand with dense poultry 
populations and large populations of birds living in the 
surrounding wetlands can be considered a hotspot for HPAI 
(H5N1) outbreaks. Our dataset shows high prevalence 
rates of the virus in the central region, corresponding with 

previous studies of HPAI (H5N1) surveillance in wild birds 
(14), in poultry fl ocks during 2004–2005 (16,17), and in 
cases of HPAI (H5N1) infection among humans during 
2004 (31).

Associating these observations to our statistical model 
is interesting, because the reproductive power of poultry 
fl ocks in regions 1, 5, 6, 7, 8, and 9 was almost identical 
to that in regions 2, 3, and 4 during non–wild-bird infected 
months (Figure 3); regions 1, 5, 6, 7, 8, and 9 experienced 
no outbreaks in wild birds. It is however impossible to 
conclude from the current data that absolutely no wild 
birds were infected because, in these regions, relatively 
few samples were collected during the appropriate periods 
(online Appendix Figure 1).

By determining the reproductive power in poultry, 
which is the ability of infected poultry fl ocks to spread 
infection to susceptible poultry fl ocks, we quantifi ed the 
association between wild bird infection and outbreaks in 
poultry. We also attempted to take the reproductive power 
in wild birds, during poultry-infected months, as our 
starting point. However, too few infected wild birds were 
available for a reliable analysis. 
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