Poliomyelitis Outbreak, Pointe-Noire, Republic of the Congo, September 2010–February 2011

Arnaud Le Menach, Augusto E. Llosa, Isabelle Mouniaman-Nara, Felix Kouassi, Joseph Ngala, Naomi Boxall, Klaudia Porten, and Rebecca F. Grais

On November 4, 2010, the Republic of the Congo declared a poliomyelitis outbreak. A cross-sectional survey in Pointe-Noire showed poor sanitary conditions and low vaccination coverage (55.5%), particularly among young adults. Supplementary vaccination should focus on older age groups in countries with evidence of immunity gaps.

On November 4, 2010, the Ministry of Health of the Republic of the Congo officially declared a poliomyelitis outbreak centered in Pointe-Noire following the laboratory identification of poliovirus type 1 in a patient with acute flaccid paralysis (AFP) (1,2). A provisional total of 554 AFP case-patients that included a high proportion (68%) of male patients was identified nationally, with paralysis onset from September 20, 2010, through February 27, 2011 (3). During this same period, 451 cases (81.4%), which included 184 deaths, were reported in Pointe-Noire. Most cases were found in the young adult population (57.4% in patients 15–24 years of age), which had a higher case-fatality ratio (CFR) of 40.8% compared with the general population of the country (3).

In most developing countries, prevention and control of poliomyelitis relies on oral polio vaccine (OPV). Routine vaccination focuses on infants <11 months of age with trivalent OPV, and supplementary immunization activities (SIAs) provide additional opportunities for vaccination for children <5 years of age (4,5). In response to the epidemic, the Ministry of Health, in collaboration with the World Health Organization, launched 4 rounds of national SIAs that used monovalent type 1 and bivalent types 1 and 3 OPV during November 12–16, 2010, December 3–7, 2010, January 11–15, 2011, and February 22–26, 2011 (3). To assess risk factors for infection and estimate vaccination coverage, Epicentre and Médecins Sans Frontières implemented a cross-sectional survey in 1 affected neighborhood of Pointe-Noire.

The Study

This survey was a single-community rapid assessment of epidemiologic conditions potentially contributing to the outbreak, including vaccination coverage. The survey was done in Mbota, a neighborhood composed of 4 sectors, comprising 9.5% of the city population. This neighborhood was selected from Loandjili district (Figure 1) on the...
basis of local expert consultation to ensure socioeconomic 
diversity and representativeness. To estimate vaccination 
coverage of 80% among children with 5% precision at a 
95% confidence level, we aimed to sample at least 246 
households. We assumed each household had on average 
1 child <5 years of age. We also assumed 5 persons per 
household on average, which corresponds to ≈1,230 
persons overall. Households were selected in each sector 
of the neighborhood. From a starting point on the border 
of the sector, interviews focused on every fifth household, 
following a predefined direction toward the center of the 
sector, subsequently covering the entire neighborhood. 
Data were collected through face-to-face interviews 
December 9–10, 2010, by using a structured questionnaire. 
The questions included household demographics, water 
supply, and sanitary conditions. In addition, information 
for each person in the household was collected about 
vaccination history (routine and SIAs), any previous 
ilness, and access to health care during the past 3 months. 

Vaccination coverage was estimated on the basis of reported 
personal history or documentary evidence of vaccination: a 
finergail marked with ink indicating vaccination during 
SIAs or a vaccination card indicating routine vaccination. 

Data were eventually collected from 1,849 persons in 
317 households of Mbota with all ages and both genders 
represented. Following the 2 first rounds of SIAs, most 
surveyed persons (1,812 [98%], 95% confidence interval 
[CI] 97.3%–98.6%) reported having been vaccinated with 
monovalent OPV and 1,769 (95.7%, 95% CI 94.7%– 
96.6%) received 2 doses in November and December 
2010. Among vaccinated persons, 627 (33.9%, 95% 
CI 31.7%–36.1%) had finergains marked with ink; the 
rest were absent during the interview or ink had already 
wn off. There were no significant differences in SIA 
vaccine coverage by gender or age. Routine vaccination 
coverage was estimated as 55.5% (95% CI 53.3%–57.8%) 
among the surveyed persons (Table 1). Among reported 
vaccinated persons, 21.3% (95% CI 18.8%–23.8%)
showed their vaccination card, and among those, 78.7% (95% CI 73.1%–84.4%) were vaccinated ≥3 times. Routine vaccination coverage did not vary significantly by gender but decreased with age (p <0.0001). For persons younger than 5 years, it was 87.5% (95% CI 83.6%–91.4%) and <52% for anyone ≥15 years of age. In the most affected age groups, 15–19 and 20–24 years, vaccination coverage was estimated to be respectively 49.3% (95% CI 42.4%–56.1%) and 46.2% (95% CI 39.3%–53.1%) (Figure 2). By comparison, administrative vaccination coverage varied since 1986 between a reported 21% in 1997 and 112% in 2009 (Table 2).

The number of persons per bedroom, an indicator of crowding, ranged between 1 and 9, and there were >4 persons per bedroom for 12.1% (95% CI 8.4%–15.7%) of all households with no statistical differences among sectors. Tap water either from a neighbor’s house (41.9%, 95% CI 35.9%–47.8%) or within the house (30.7%, 95% CI 25.2%–36.3%) was the primary potable water source recorded. Wells were also common (23.3%, 95% CI 18.3%–28.4%). When the primary source of potable water was unavailable, wells were the most frequently mentioned alternative source (37.8%, 95% CI 32.0%–43.6%). Most households reported use of a latrine shared with neighbors (57.4%, 95% CI 51.8%–63.1%) or within their house (31.4%, 95% CI 26.1%–36.7%). Few surveyed persons (16.1%, 95% CI 14.4%–17.7%) reported illness during the recall period, but if sick, 73.3% (95% CI 67.4%–79.2%) sought health care, which suggests little underreporting of AFP cases.

Conclusions

The cross-sectional survey confirmed administrative estimates of low routine vaccination decreasing with age. Specifically, in the surveyed young adult population (15–29 years of age) it varied between a reported 46.2% and 52.6%. According to administrative data, the reported vaccination coverage varies between 41.7% and 79% in young adults between 15 and 24 years of age. Civil conflicts spanning the 1990s have potentially undermined vaccination efforts, especially affecting those currently 10–20 years of age. A further method of protection for a person is past exposure to wildtype strains. To our knowledge, no polio transmission had been reported in Pointe-Noire since the last outbreak in the city in 1969 (6). Low vaccination coverage and no previous exposure to wild virus likely led to an accumulation of susceptible persons. Once introduced, the disease spread quickly through this highly susceptible, undervaccinated, and underexposed young adult population, with disease spread facilitated by frequent flooding and poor to medium household sanitation conditions, i.e., crowding sleeping areas, shared latrines between households, and common sources for water consumption.

Poliovirus infections lead to clinical disease more frequently in older age groups, (7), which partially explains the observed shift of AFP cases toward young adult populations. Moreover, children were better protected with higher vaccination coverage. Death is more frequent when infection occurs in older age groups (8,9), which explains part of the high observed CFR. Clinical manifestations of poliovirus infections are more common in boys and men than in girls and women (10), as observed, and even though males and females share similar vaccination coverage, women in the young adult age groups may have additionally benefitted from exposure to excreted OPV while caring for the young (11).

As seen in the Republic of the Congo, or previously in Namibia (12), Cape-Verde (13), any country with no recent wild-type polio transmission and a similarly low level of vaccination coverage may face similar outbreaks characterized by a large proportion of cases in older age groups and a high CFR (14). Avoiding outbreaks will rely on ensuring vaccination of the at-risk population. Routine vaccination activities should be reinforced by SIAs punctually focusing on older age groups (especially among persons 15–35 years of age) when evidence of immunity gaps are documented by serologic surveys or low historical vaccination coverage data. Lessons from the epidemic should benefit health authorities in better prevention and response to further outbreaks on the road to eradication.

Acknowledgments

We thank the Ministry of Health for support and collaboration, the hospital directors and laboratory director in Pointe-Noire,
and colleagues from World Health Organization and the Centers for Disease Control and Prevention for the harmonization of the database and stimulating technical discussions.

Dr Le Menach is an epidemiologist specialized in infectious diseases modeling, surveillance, prevention, and control. He works in the London Regional Epidemiology Unit of the Health Protection Agency, as part of the European program for intervention epidemiology (EPIET).

References

12. Sidley P. Seven die in polio outbreak in Namibia. BMJ. 2006;332:1408. doi:10.1136/bmj.332.7555.1408-b

Address for correspondence: Arnaud Le Menach, Health Protection Agency, 151 Buckingham Palace Rd, London SW1W 9SZ, UK; email: arnaud.lemenach@gmail.com

The Public Health Image Library (PHIL)

The Public Health Image Library (PHIL), Centers for Disease Control and Prevention, contains thousands of public health-related images, including high-resolution (print quality) photographs, illustrations, and videos.

PHIL collections illustrate current events and articles, supply visual content for health promotion brochures, document the effects of disease, and enhance instructional media.

PHIL Images, accessible to PC and Macintosh users, are in the public domain and available without charge.

Visit PHIL at http://phil.cdc.gov/phil.