known Lyme disease–endemic areas (CDC, unpub. data). Selective testing of dogs with exposure histories may yield misleading results with respect to local endemicity.

Our findings suggest that canine seroprevalence >5% can be a sensitive but nonspecific marker of increased risk for human Lyme disease. Because dogs do not transmit infection directly to humans (or humans to dogs), this association reflects similar susceptibilities to tick-borne infection. In some circumstances, high canine seroprevalence appears to anticipate increasing rates of human infection at the county level. Conversely, canine seroprevalence <1% is associated with little to no local risk for human infection. Canine seroprevalence is a useful adjunct to human surveillance for Lyme disease.

Acknowledgments

We thank the anonymous reviewers for their suggestions.

Dr Mead is a medical epidemiologist with the Division of Vector-borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, CDC, Fort Collins. His research interests include Lyme disease surveillance.

References


Address for correspondence: Paul Mead, Centers for Disease Prevention and Control, 3150 Rampart Rd, Fort Collins, CO 80521, USA; email: pfm0@cdc.gov

Mycobacterium chelonae

[mi’ko-bak-tër-eom che’lō-nae]

From the Greek mycēs, fungus, baktērion, little rod, and chelōnē, turtle. German researcher Friedrich Freidmann reported isolation of this pathogen from the lung tissues of sea turtles (Chelona corticata) in 1903, referring to it as the turtle tubercle bacillus. In 1920, the Society of American Bacteriologists recommended that the organism be named after its discoverer, or Mycobacterium friedmannii. Bergey et al., however, chose in 1923 to instead recognize the host animal in the first edition of Bergey’s Manual of Determinative Bacteriology and listed the bacterium as Mycobacterium chelonei. The spelling was changed in the 1980s to chelonae to make it consistent with general use.