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Wild Boars as 
Hosts of Human-

Pathogenic 
Anaplasma 

phagocytophilum 
Variants

To the Editor: Michalik et al. (1) 
reported a 12% prevalence of Ana-
plasma phagocytophilum, the caus-
ative agent of human granulocytic 
anaplasmosis and tick-borne fever of 
ruminants, in wild boars in Poland. A. 
phagocytophilum has been reported 
with low prevalence among wild boar 
in the Czech Republic, Slovenia (2), 
and Japan (3). In Spain and Missis-
sippi, United States, A. phagocyto-
philum in wild boars or feral pigs, re-
spectively, has not been reported (4,5). 
Furthermore, in Slovenia and Poland, 
the A. phagocytophilum gene sequenc-
es found in samples from wild boars 
were identical to those found in sam-
ples from humans and the tick vector 

Ixodes ricinus (1). These results sug-
gested, as pointed out by Michalik et 
al. (1), that wild boar might play a role 
in the epizootiology of A. phagocyto-
philum by serving as a natural reser-
voir host, at least in some regions.

To test this hypothesis, we con-
ducted transcriptomics studies to char-
acterize host response to A. phagocy-
tophilum infection in naturally and 
experimentally infected boars (6,7). 
The results suggested that boars are 
susceptible to A. phagocytophilum, 
but are able to control infection, 
mainly through activation of innate 
immune responses and cytoskeleton 
rearrangement to promote phagocy-
tosis and autophagy. Control of A. 
phagocytophilum infection in boars 
might result in infection levels below 
PCR detection or infection clearance, 
contributing to the low percentage of 
infection prevalence detected for this 
species in most regions.

The low detection levels suggest 
that boars have a low or no impact as a 
reservoir host for A. phagocytophilum. 
Even if boars remain persistently in-
fected with A. phagocytophilum at low 
levels by downregulating some adap-
tive immune genes and delaying the 
apoptotic death of neutrophils through 
activation of the Jak-STAT pathway, 
among other mechanisms (6), their 
role as a source of infection for ticks 
remains to be demonstrated.
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Migratory Birds, 
Ticks, and Crimean-
Congo Hemorrhagic 

Fever Virus
To the Editor: In a recently 

published study, Estrada-Peña et al. 
reported the fi nding of Crimean-Congo 
hemorrhagic fever virus (CCHFV) 
in adult Hyalomma lusitanicum ticks 
from red deer (Cervus elaphus) in 
Spain during 2010 (1). Phylogenetic 
analysis showed that the virus was 
most likely of African origin. Here, 
we present a model for the transfer of 
CCHFV-infected ticks by migratory 
birds from Africa to Europe.

CCHFV is an RNA virus 
in the genus Nairovirus, family 
Bunyaviridae. It is transmitted to 
humans through tick bites or by 
contact with blood or tissues from 
infected ticks, livestock, or humans. 
Manifestations of severe cases are 
internal and external hemorrhages and 
multiorgan failure; the case-fatality 
rate is ≈30% (2,3). CCHFV has the 
widest geographic distribution of 
any tick-borne virus, encompassing 
≈30 countries from eastern China 
through Asia, the Middle East, and 
southeastern Europe to Africa (3,4). 
During the past decade, the virus 
has emerged in new areas of Europe, 
Africa, the Middle East, and Asia 
and has increased in disease-endemic 
areas (5) (online Technical Appendix, 
wwwnc.cdc.gov/EID/pdfs/12-0718-
Techapp.pdf).

In response to the emergence of 
CCHFV in Europe, during spring 2009 
and 2010, we screened migratory birds 
for ticks as they traveled from Africa 
to Europe. At 2 bird observatories on 
the Mediterranean Sea (Capri, Italy, 
and Antikythira, Greece), 14,824 birds 
of 78 different species were caught 
and examined for ticks. Most (88%) of 
the 747 collected ticks were identifi ed 
as members of the Hyalomma 
marginatum complex, most probably 
H. rufi pes and H. marginatum sensu 

stricto (s.s.), i.e., the principal vectors 
of CCHFV (2). Of 10 morphologically 
representative ticks, 9 were identifi ed 
by molecular methods as H. rufi pes 
and 1 as H. marginatum s.s. (6).

Ticks belonging to the H. 
marginatum complex are common 
in large parts of the African and 
Eurasian continents. The immature 
ticks feed mainly on birds and, to 
a lesser extent, on small mammals, 
whereas the adults actively seek larger 
mammals, including hares, wild and 
domesticated ungulates, or humans 
(4). In accordance with this pattern, 
99% of the collected ticks in our study 
were larvae and nymphs.

On April 23, 2009, a woodchat 
shrike (Lanius senator senator) 
was caught at the Antikythira Bird 
Observatory in the Greek archipelago. 
The bird was a female in her second 
calendar year and harbored 19 H. 
marginatum complex ticks (3 larvae 
and 16 nymphs, most likely H. rufi pes). 
Three of the nymphs, 1 half-fed and 2 
fully engorged, were found positive 
by real-time PCR for the CCHFV 
small (S) segment by using methods 
previously described (7), amplifying 
a 127-bp product. The 3 positive 
samples were sequenced and found to 
be identical. Previous studies, based 
on the S segments, have identifi ed 7 
phylogenetically distinct genotypes: 
Africa 1–3, Asia 1–2, and Europe 1–2 
(8). Europe 1 has been reported from 
Russia, Turkey, Greece, Bulgaria, 
and the Balkans, and Europe 2 is the 
nonpathogenic strain AP92 found in 
Greece. Alignment of the Antikythira 
strain with CCHFV S segment 
sequences deposited in GenBank 
showed that it had the greatest 
similarity with strains belonging to 
the genotype Africa 3 (8). In addition, 
a phylogenetic tree clearly places 
the Antikythira sequence within the 
Africa 3 clade (Figure).

The woodchat shrike winters 
in a belt from Senegal to Somalia 
and breeds in southern Europe and 
northern Africa (9). The Antikythira 
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