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Human and Porcine 
Hepatitis E Viruses, 

Southeastern 
Bolivia

To the Editor: Hepatitis E 
virus (HEV) genotypes 3 and 4 
are considered to be primarily 
zoonotic (1). However, recent data 
indicate that both genotypes can be 
transmitted among humans through 
other routes (2,3). Observations 
of genetic distinctiveness between 
swine and human HEV strains 
circulating within the same region 
argue against exclusivity of zoonotic 
transmission (4). A recent report 
presented a remarkable example of 
such distinction between genotype 
3 isolates in rural communities in 
southeastern Bolivia (5).

We examined HEV sequences 
obtained in that study to show the 
independent genetic origin of swine 
and human variants. Findings suggest 
disjunction between human and swine 
HEV strains in this epidemiologic 
setting, despite the potential for 
extensive cross-species exposure.

Using reference sequences from 
Lu et al. (6), we conducted subtype 
analysis of HEV open reading frame 
2 sequences at nucleotide positions 
826–1173 (GenBank accession no. 
AF060668) from isolates from 2 rural 
communities in southeastern Bolivia 

(5). Analysis showed that swine 
sequences belonged to subtype 3i and 
that the human sequences belonged to 
3e.

We collected all available 
GenBank genotype 3 sequences 
covering this genomic region for 
which the dates of collection were 
documented. Sequences were used to 
estimate the time from the most recent 
common ancestor (tMRCA) by using 
BEAST version 1.6.1 (7). Estimated 
tMRCA for GenBank sequences was 
longer than for sequences from Bolivia 
alone (Table) or for all genotype 3 
sequences together (Table).

To reduce the effect of close 
relatedness among human or swine 
HEV sequences from Bolivia on the 
tMRCA estimate, we used only 1 
representative sequence per species 
from each community in the fi nal 
analysis. This analysis identifi ed an 
estimated tMRCA similar to that seen 
for GenBank sequences alone (Table, 
model F vs. model D). This estimate 
indicates that human and swine HEV 
isolates from southeastern Bolivia 
last shared a common ancestor ≈275 
years ago (Table, model F). Thus, 
swine HEV strains from both rural 
communities belonged to subtype 3i, 
and the human HEV strains identifi ed 
from the community of Bartolo, 
Bolivia, belonged to subtype 3e and 
shared an ancestor with swine strains 
almost 3 centuries ago.

This fi nding is surprising because 
the community of Bartolo has several 
potential risk factors for zoonotic 
transmission of HEV. There are ≈200 
humans and ≈70 swine in Bartolo (8). 
Residents are mainly native Quechua 
and Guarani with some of mixed 
Spanish ancestry who subsist at a 
low socioeconomic level. Their main 
livelihood activities are agriculture 
and breeding of animals. Free-
range pig farms are family owned. 
Because of its impoverished state, the 
community has no running water, and 
few houses have toilets. No facilities 
are suitable for safely slaughtering 

 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 18, No. 2, February 2012 339



LETTERS

animals (5,9). These conditions 
appear to create a setting in which 
zoonotic transmission of HEV should 
be common, and infection should be 
caused by a strain shared between 
swine and humans. However, the data 
suggest host-specifi c infection with 
distinct HEV subtypes.

Although specimens were 
collected from 172 humans (≈86%) 
and 67 swine (≈96%) in Bartolo (8), 
zoonotically transmitted isolates 
may have been missed because 
of the sample-pooling technique 
used (5). Nevertheless, detection of 
distinct HEV strains in human and 
swine populations indicates possible 
nonzoonotic, human-to-human 
transmission in this community. 
Detection of antibodies against HEV 
among 7% of residents and HEV 
genomes in persons without serologic 
markers of HEV infection indicate 
a higher HEV prevalence in Bartolo 
(5). Subclinical infection detected by 
PCR among Bartolo residents (5), 
rapid decrease of HEV antibody, and 
uncertain sensitivity of commercial 
serologic assays (10) suggest that the 
reported extent of HEV infection is 
most likely an underestimate.

High prevalence may generate 
conditions in this community that 
effectively prevent cross-species 
transmission because of frequent 
exposure to HEV early in life when 
contacts between humans and 
animals are limited, thus promoting 
host-specifi c transmission. This 
supposition is supported by the higher 
seropositivity seen among children 1–5 
years of age and adults 41–50 years of 

age in Bartolo (5). Implications of 
these observations for understanding 
HEV evolution and epidemiology 
of HEV infections warrant further 
research on genetic heterogeneity of 
HEV strains in this region and other 
epidemiologic settings.
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Table. Model estimates of time to most common recent ancestor for HEV ORF2 nucleotide sequences, southeastern Bolivia* 

Model
Start

position
Stop

position
Bolivia

sequence
GenBank
sequence

Mean
tMRCA, y 

95% HPD, y Mean ± SD rate of 
substitutions/site/yLower Upper 

A 826 1173 X NU 55.31 16.26 108.05 3.27 × 10–3 ± 9.44 × 10–6

B 826 1173 NU 3i and 3e 148.63 3.01 291.46 1.88 × 10–2 ± 6.41 × 10–4

C 826 1173 X X 144.45 38.66 298.20 3.43 × 10–3 ± 4.74 × 10–5

D 826 1173 NU X 328.05 45.59 681.90 2.12 × 10–3 ± 7.33 × 10–5

E 1 1980 NU X 296.06 163.40 467.97 9.27 × 10–4 ± 1.25 × 10–5

F 826 1173 3 seqs X 275.45 40.06 635.32 2.40 × 10–3 ± 5.06 × 10–5

*HEV, hepatitis E virus; ORF, open reading frame; tMRCA, time to the most recent common ancestor; HPD, highest posterior density boundary; X, 
sequences was used; NU, not used; 3i and 3e, subtype 3i and 3e sequences were used; 3 seqs, sequences (CV2, CB9, and HB2BA053) from Bolivia were
used. 
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