Historical Prevalence and Distribution of Avian Influenza Virus A(H7N9) among Wild Birds

Sarah H. Olson, Martin Gilbert, Ming Chu Cheng, Jonna A.K. Mazet, and Damien O. Joly

We examined 48 published studies for which sample sizes could be ascertained to determine the historic prevalence of influenza A(H7N9) virus in wild bird populations and reviewed GenBank data to further establish its distribution. Low prevalence (0.0093%) in Asia suggests >30,000 samples would be required to detect the H7N9 subtype in wild birds.

Beginning in February 2013, and ongoing at publication of this article, infections with the zoonotic virus, influenza A(H7N9), have caused serious illness in humans in provinces of southeastern China. On April 4, the China Animal Disease Control Centre announced that the virus had been detected in samples collected from a pigeon and chickens at a market in Shanghai (1,2). On April 17, the virus was detected in a sample from a wild pigeon in Nanjing, Jiangsu Province (3). Chen et al. concluded that humans were infected by domestic birds (7); no human-to-human transmission was detected or suspected (4). The structure of the hemagglutinin (HA) protein in the virus and the lack of reports of severe disease in poultry indicate that the virus exhibits characteristics of low pathogenicity in birds (5,6). Recent phylogenetic analysis indicates that the HA segment of the H7N9 subtype is closely related to a strain that was isolated from domestic ducks in Zhejiang, China, in 2011. The neuraminidase (NA) gene of the H7N9 subtype has been reported to be isolated from birds (9). We included a partially sequenced HA gene (1,676 bp [GenBank accession no. JN244232]) from A/wild bird/Korea/A3/2011 in our comparison (Table) after evaluating the published phylogenetic trees (8).

Prevalence was calculated as the (no. positive samples)/(no. tested) × 100%. The regional estimate for Asia was an unweighted calculation based on the sum of all positive samples and all tested birds, irrespective of detection biases that may have arisen from different wild bird surveillance systems. We determined the minimum sample size to detect at least 1 positive sample based on a 0.05 level of significance (10).

Influenza H7N9 subtypes have been identified among wild birds globally (but not necessarily sequenced or submitted to GenBank) by isolation and by using reverse transcription PCR. The H7N9 subtype has been reported among wild birds from Delaware (USA)/Alberta (Canada), Guatemala, Spain, Sweden, Egypt, Mongolia, and Taiwan (online Technical Appendix Table 1). In these 48 studies, subtype H7N9 has not been detected in wild birds in these locations in Asia: Russia (combined sample size 7,353),...
Japan (4,335), South Korea (28,214), or China (158) (online Technical Appendix Table 2); furthermore, when subtype H7N9 was detected in Asia, its prevalence was low (online Technical Appendix Table 2).

In countries within Asia, <0.1% of samples from wild birds tested positive for any H7 subtype; <0.05% tested positive for any N9 subtype; <0.01% tested positive for an H7N9 strain, and <0.02% tested positive for an H9N2 strain (online Technical Appendix Table 2). Assuming an apparent prevalence of 0.01%, we estimate that ≥30,000 birds would have to be sampled to detect 1 bird that was H7N9-positive with a 95% probability. To similarly detect 1 bird that was positive for H7, N9, or the H9N2 subtype in Asia, >4,000, 7,000, or 19,000 samples from birds, respectively, would be required.

Since 1988, the HA- and NA-producing genes of avian influenza subtype H7N9 have been deposited in GenBank 12 times, mainly representing isolates collected from wild bird hosts (Table). In Asia, before this outbreak, an H7N9 strain was sequenced from a wild bird in South Korea that was sampled during 2011 in a migratory bird habitat adjacent to duck farms (7) and also during 2011 from a sample from a mallard duck of unknown status from Japan. In 2008, the other H7N9 strain sequences collected in Asia were from a wild duck that was sampled in South Korea and from a wild bird sampled in Mongolia. All virus sequences were obtained from ducks and domestic geese, with the exception of a chicken in China and the following from birds in the United States: a turkey in Minnesota, a guinea fowl in Nebraska, and ruddy turnstones (Arenaria interpres) sampled in Delaware during 1995 and 2000. Eight of the complete HA and NA genetic sequences are attributed to wild birds, 3 are attributed to domestic birds, and 1 is attributed to a bird that could not be identified as wild or domestic because insufficient information was available.

Conclusions

Variation in the methods used in each study makes a precise calculation of H7N9 subtype prevalence in all wild birds impossible to determine, but given the available data, we conclude that the occurrence of the H7N9 subtype in wild bird populations is rare. We also conclude that sample sizes adequate to detect the virus among wild birds will be in the tens of thousands. Publishing the sample size and genus and species of wild birds tested in China will provide a better estimate of the prevalence among these birds related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11). Wild birds are recorded as the predominant source of H7N9 related to this outbreak, especially because wild song birds have been hypothesized to be a possible reservoir (11).

Infection with the H7N9 subtype may prove challenging to control by culling birds, because infected domestic flocks may be asymptomatic. In wild bird populations, low pathogenicity strains are likely to be sustained longer than highly pathogenic strains, which have been unable to persist in wild populations in the absence of introductions.
Influenza A(H7N9) Virus among Wild Birds

In summary, we present evidence that wild bird surveillance for the novel influenza A(H7N9) virus will require large sample sizes. Given the low likelihood of detection, risk-based surveillance is recommended. Ruling out wild birds as a continuing source of infection for domestic birds or humans will be critical to informing strategies to control the spread of this emerging zoonotic disease.

Acknowledgments

We thank everyone involved with bird sampling efforts and testing, as well as the anonymous reviewers who contributed helpful comments to the manuscript.

This study was funded by the United States Agency for International Development (USAID) Emerging Pandemic Threats program, the PREDICT project. The contents are the responsibility of the authors and do not necessarily reflect the views of USAID or the United States Government. Additional funding for this work was provided by the National Institute of Allergy and Infectious Diseases, National Institutes of Health, and the Department of Health and Human Services under contract HHSN26620010007C. Journal access was provided by in-kind support from the University of Wisconsin-Madison Center for Sustainability and the Global Environment.

Dr Olson is a wildlife epidemiologist currently working on the USAID Emerging Pandemic Threats program, PREDICT project. Her research focuses on complex ecologic and social factors related to emerging infectious diseases.

References

Address for correspondence: Damien O. Joly, Metabiota, 1611 Bowen Rd, Unit 7, Nanaimo, British Columbia V9R 5G8, Canada; email: djoly@metabiota.com

Use of trade names is for identification only and does not imply endorsement by the Public Health Service or by the US Department of Health and Human Services.
Historic Prevalence and Distribution of Avian Influenza Virus A(H7N9) among Wild Birds

Technical Appendix

Table 1. Global distribution and prevalence of influenza H7N9 virus in wild birds

<table>
<thead>
<tr>
<th>Country/state (reference)</th>
<th>Years sampled</th>
<th>No. tested</th>
<th>No. (%)</th>
<th>H7N9 virus-positive birds</th>
<th>Population sampled*: no. positive for any avian influenza virus/no. captured (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guatemala (1)</td>
<td>2006–2010</td>
<td>256</td>
<td>1 (0.39) Blue-winged teal (Anas discors)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anatidae: 28/234 (12); Picidae: 1/21 (4.8); Tyrannidae: 1/1 (100)</td>
<td></td>
</tr>
<tr>
<td>Spain (2)</td>
<td>2005–2007</td>
<td>1,435</td>
<td>2 (0.14) Mallards (Anas platyrhynchos)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anseriformes: 29/628 (4.6); Ciconiformes: 3/308 (1); Charadriformes: 0/217; Gruidae: 3/180 (1.7); Columbiformes: 0/31; Pelecaniformes: 0/29; Passeriformes: 0/24; Phoenicopteriformes: 2/7 (28.6); Other: 0/11</td>
<td></td>
</tr>
<tr>
<td>Spain (3)</td>
<td>2005–2009</td>
<td>1,236</td>
<td>1 (0.081) Common teal (Anas crecca)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anatidae: 54/686 (7.9%); Laridae 2/256 (0.8%); Phoenicopteridae: 4/154 (2.5%); Rallidae: 1/60 (1.3%); Ardeidae: 0/12; Porphyridae: 0/12; Pycnonotidae: 0/2; Procellariidae: 0/1; Sterna: 0/2; Alcidae: 0/1; Phalacrocoracidae: 0/6; Chlidonias: 0/1; Laridae: 0/2; Scolopacidae: 0/4; Recurvirostridae: 0/2; Sphenidae: 0/2; Phaethontidae: 0/1; Seriomyzidae: 0/1; Phalacrocoracidae: 0/6; Gaviidae: 0/1; Laridae: 0/2; Procellariidae: 0/1; Sterna: 0/2; Alcidae: 0/1; Phalacrocoracidae: 0/6</td>
<td></td>
</tr>
<tr>
<td>Egypt (4)</td>
<td>2003–2007</td>
<td>6,070</td>
<td>2 (0.033) Northern shoveler (Anas clypeata)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anatidae majority: not reported</td>
<td></td>
</tr>
<tr>
<td>Delaware, USA (5)</td>
<td>2000–2005</td>
<td>6,340</td>
<td>2 (0.032) Mix of shorebirds and ducks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Arenaria interpres: 262/2368 (11%); Calidris canutus: 15/1993 (0.75); Calidris alba: 8/745 (1.1); Calidris alpina: 1/377 (0.26); Calidris pusilla: 4/439 (0.91%); Limnodromus griseus: 1/157 (0.64%); Calidris minutilla: 0/127; Larus atricilla: 1/78 (1.3%); Rynchops niger: 0/49; Larus argentatus: 0/5; Tringa semipalmata: 0/2</td>
<td></td>
</tr>
<tr>
<td>Mongolia (6)</td>
<td>2005–2009</td>
<td>3,950</td>
<td>1 (0.025) Wild duck, goose, swan or gull</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not reported: Cygnus cygnus; Anser indicus; Buteo buteo; Todiramphus elegans; Anas platyrhynchos; Anas strepera; Laridae</td>
<td></td>
</tr>
<tr>
<td>Taiwan (7) + this study</td>
<td>1998–2011</td>
<td>44,786</td>
<td>8 (0.018) Wild ducks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anatidae 229/20812 (1.1%); Shorebirds 3/6435 (0.05%); Laridae 2/617 (0.32%); Ardeidae 2/825 (0.24%); other birds 1/598 (0.17%)</td>
<td></td>
</tr>
<tr>
<td>Delaware, USA, & Alberta, Canada (8)</td>
<td>1976–2001</td>
<td>17,732</td>
<td>2 (0.011) Mix of shorebirds and ducks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Anatidae (2389/13466, 22.2%); Charadriformes—Larus atricilla and L. argentatus majority (606/4266, 14.2%)</td>
<td></td>
</tr>
</tbody>
</table>

*Populations sampled represent individual published studies in correlating countries/states.
<table>
<thead>
<tr>
<th>Country (reference)</th>
<th>Years monitored</th>
<th>No. tested</th>
<th>No. positive (%)</th>
<th>Population sampled: * no. positive for any avian influenza virus/no. captured (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mongolia (6)</td>
<td>2005–2009</td>
<td>3,950</td>
<td>2 (0.0506)</td>
<td>1 (0.0253) 0 (0.0253) 0 (0.0000) 0 (0.0000) 0 (0.0000)</td>
</tr>
<tr>
<td>Taiwan (7) + this study</td>
<td>1998–2011</td>
<td>44,786</td>
<td>49 (0.109)</td>
<td>23 (0.0514) 8 (0.0179) 0 (0.0000) 0 (0.0000) 0 (0.0000)</td>
</tr>
<tr>
<td>Asia (Kazakhstan, Mongolia, & Russia) (9)</td>
<td>2003–2009</td>
<td>2,604</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Russia (10)</td>
<td>2008</td>
<td>5,678</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Japan (11)</td>
<td>2001–2008</td>
<td>4,335</td>
<td>0</td>
<td>6 (0.138)</td>
</tr>
<tr>
<td>South Korea (12)</td>
<td>2003–2008</td>
<td>28,214</td>
<td>13</td>
<td>7 (0.0248)</td>
</tr>
<tr>
<td>China (13)</td>
<td>2005–2006</td>
<td>158</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Iran (14)</td>
<td>2003–2007</td>
<td>1,146</td>
<td>2</td>
<td>0.175</td>
</tr>
<tr>
<td>Mongolia (15) + this study</td>
<td>2009–2012</td>
<td>5,831</td>
<td>6 (0.103)</td>
<td>2 (0.0343)</td>
</tr>
<tr>
<td>Asia total</td>
<td>1998–2012</td>
<td>96,702</td>
<td>72</td>
<td>41 (0.0424)</td>
</tr>
</tbody>
</table>

*Populations sampled represent individual published studies in correlating countries/states.
†NA, not applicable.

References

