DISPATCHES

References

- Brown IH. The epidemiology and evolution of influenza viruses in pigs. Vet Microbiol. 2000;74:29–46. http://dx.doi.org/10.1016/ S0378-1135(00)00164-4
- Katsuda K, Sato S, Shirahata T, Lindstrom S, Nerome R, Ishida M, et al. Antigenic and genetic characteristics of H1N1 human influenza virus isolated from pigs in Japan. J Gen Virol. 1995;76:1247–9. http://dx.doi.org/10.1099/0022-1317-76-5-1247
- Peiris JS, Poon LL, Guan Y. Emergence of a novel swine-origin influenza A virus (S-OIV) H1N1 virus in humans. J Clin Virol. 2009;45:169–73. http://dx.doi.org/10.1016/j.jcv.2009.06.006
- Novel Swine-Origin Influenza A. (H1N1) Virus Investigation Team, Dawood FS, Jain S, Finelli L, Shaw MW, Lindstrom S, et al. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med. 2009;360:2605–15. http://dx.doi.org/10.1056/NEJMoa0903810
- Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, et al. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science. 2009;325:197–201. http://dx.doi.org/10.1126/science.1176225
- Vijaykrishna D, Poon LL, Zhu HC, Ma SK, Li OT, Cheung CL, et al. Reassortment of pandemic H1N1/2009 influenza A virus in swine. Science. 2010;328:1529. http://dx.doi.org/10.1126/science.1189132
- Moreno A, Di Trani L, Faccini S, Vaccari G, Nigrelli D, Boniotti MB, et al. Novel H1N2 swine influenza reassortant strain in pigs derived from the pandemic H1N1/2009 virus. Vet Microbiol. 2011;149:472–7. http://dx.doi.org/10.1016/j.vetmic.2010.12.011

- Howard WA, Essen SC, Strugnell BW, Russell C, Barass L, Reid SM, et al. Reassortant pandemic (H1N1) 2009 virus in pigs, United Kingdom. Emerg Infect Dis. 2011;17:1049–52.
- WHO Global Influenza Surveillance Network. Manual for the laboratory diagnosis and virological surveillance of influenza. Geneva: World Health Organization; 2011. p. 35–77.
- Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR. Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol. 2001;146:2275–89. http://dx.doi.org/10.1007/ s007050170002
- Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9. http://dx.doi.org/10.1093/ molbev/msr121
- Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–20. http://dx.doi.org/10.1007/ BF01731581
- Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

Address for correspondence: Kunihisa Kozawa, Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamiokimachi, Maebashi-shi, Gunma 371-0052, Japan; email: kozawa-ku @pref.gunma.lg.jp

etymologia

Sarcocystis nesbitti [sahr"ko-sis'tis nez-bit'ē]

In 1843, Swiss scientist Friedrich Miescher found "milky white threads" in the muscles of a mouse, which for years were known as "Miescher's tubules." In 1882, Lankester named the parasite *Sarcocystis*, from the Greek *sarx* (flesh) and *kystis* (bladder). Scientists were unsure whether to classify the species as protozoa or as fungi because only the sarcocyst stage had been identified. In 1967, crescent-shaped structures typically

Sources

- 1. Dubey JP, Speer CA, Fayer R. Sarcocystosis of animals and man. Boca Raton (FL): CRC Press, Inc; 1989.
- Fayer R. Sarcocystis spp. in human infections. Clin Microbiol Rev. 2004;17:894–902. http://dx.doi.org/10.1128/ CMR.17.4.894-902.2004

found in protozoa were seen in sarcocyst cultures, and it was determined to be a protozoan, a close relative of *Toxoplasma* spp. In 1969, A. M. Mandour described a new species of Sarcocystis in rhesus macaques, which he named *Sarcocystis nesbitti*, after Mr. P. Nesbitt, who saw the trophozoites in stained smears. Snakes are now known to be the definitive hosts of *S. nesbitti*, and several primates, including humans, can be intermediate hosts.

- Lau YL, Chang PY, Subramaniam V, Ng YH, Mahmud R, Ahmad AF, et al. Genetic assemblage of Sarcocystis spp. in Malaysian snakes. Parasit Vectors. 2013;6:257. http://dx.doi. org/10.1186/1756-3305-6-257
- Mandour AM. Sarcocystis nesbitti n. sp. from the rhesus monkey. J Protozool. 1969;16:353–4. http://dx.doi.org/10.1111/ j.1550-7408.1969.tb02281.x

Address for correspondence: Ronnie Henry, Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Mailstop E03, Atlanta, GA 30333, USA; email: boq3@cdc.gov

DOI: http://dx.doi.org/10.3201/eid1912.ET1912