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Tuberculosis and HIV Co-infection, 
California, 1993–2008 

Technical Appendix 

I. Registry Cross-match 

Prior to April 17, 2006, name-based reporting was restricted to confidential AIDS cases in 

California; after this date, confidential reporting of all verified cases of HIV infection was also 

required. Since the US Centers for Disease Control and Prevention (CDC) 1993 AIDS case 

definition, all patients with active TB and HIV infection are counted as AIDS cases (1). TB 

patients with HIV co-infection were identified through a statewide registry match with the 

California Office of AIDS using Registry Plus Link Plus software (2), a probabilistic record 

linkage program developed by CDC. Registry cross-match criteria included name, sex, 

race/ethnicity, and date and place of birth. Manual review of all matched cases was performed, 

with only those matches above a predetermined priority threshold considered to represent a co-

infected case (3). Demographic, behavioral, and clinical information, including mortality, was 

abstracted from state surveillance forms (Report of a Verified Case of Tuberculosis and Adult 

HIV/AIDS Confidential Case Report). Surveillance data for both diseases have demonstrated 

high validity (4,5). 

II. Nonparametric Back-calculation 

Nonparametric back-calculation (6) calculates the HIV incidence rate based on AIDS diagnoses, 

using the incubation period distribution. During the highly active antiretroviral therapy 

(HAART) era, initiation of HAART prior to AIDS diagnosis by a fraction of patients leads to a 

slowing of HIV progression and delays AIDS diagnosis, effectively lengthening the average 

incubation period. Because the fraction of individuals initiating therapy is not well characterized 

by race over time in California, the realized distribution of the waiting time between HIV 

infection and AIDS diagnosis is not well known, and thus, while back-calculation may yield 
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informative estimates of the HIV incidence, highly precise estimates of the incidence of HIV 

infection cannot be obtained. 

We model the number of California diagnoses in ethnicity k during year i as follows. Let Iik 

denote the number of individuals infected during year i for ethnicity k, and let Fji denote the 

probability of diagnosis in year j given infection in year i. In general, observed diagnosis counts 

in any given year depend on the following: 1) changes in the diagnosis definition as occurred, for 

instance, in 1992; 2) delays in reporting; and 3) migration of HIV-positive case-patients into and 

out of California prior to AIDS diagnosis. Note also that, in general, the quantities Fji depend on 

the year i, due to treatment because individuals who have initiated HAART have a slowing rate 

of progression due to suppression of viral replication. In the absence of these features, we may 

use the method of nonparametric back-calculation to compute an estimate of the effective 

number infected during year i as follows. The effective number infected is, in general, smaller 

than the true number of infected, because some of those truly infected initiated HAART and 

were therefore less likely to become diagnosed with AIDS than individuals who had not initiated 

HAART; the effective number infected provides an approximate equivalent untreated HIV 

population size, which may be useful in computing incidence rates, but is not useful for public 

health planning. 

To compute the nonparametric back-calculation estimate, we assume independent Poisson counts 

for the diagnoses in each year (effectively ignoring diagnosis delay, a reasonable assumption 

given the time that has elapsed since the counts we are analyzing began). Then we have the 

following expected number of diagnoses in year i: i  FiI
i
 ; for simplicity, we suppress the 

subscript k for ethnicity in what follows. Let i denote the vector of diagnoses from year i=0 to 

year N. Then, the log likelihood of a given sequence of counts yi is 

log L   log
ei i

yi

yi!i 0

N










 i  yi log i    c

i 0

N  (where c is a term constant in the unknowns 

Ii-l). Following Bacchetti et al. (1993), we add the following penalty term. Let i  log Ii ; the 

penalty is q  i  2i1 i2 
i 0

N2
2

. We then maximize A I   log L   kq, where 1980 

corresponds to year 0, and N=29 (for a total of 30 years of data, i.e., through 2009). 
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While the elegance of the nonparametric bootstrap derives in part from its relative freedom from 

mechanistic assumptions, our application of this method to the post-HAART period requires 

consideration of the change in the incubation period distribution at the population level caused 

by a fraction of people starting therapy. Unfortunately, the rate of testing and the rate of starting 

therapy at different times and for different CD4 progression stages are simply not known. We 

therefore derived incubation period distributions by modifying the HIV staging model developed 

by Longini et al (1989) (7) using the methods in Charlebois et al. (2011) (8); specifically, we 

derive differential equations that we will use to derive the quantities Fji . To derive them, we will 

use a model of untreated HIV, but then assume that a certain fraction of individuals commence 

therapy and that their progression is slowed. For untreated individuals, the 3 stages are 1) 

infected but not seropositive 2), seropositive but asymptomatic, and 3) pre-AIDS symptoms and 

abnormal hematology (see Longini et al. 1989 for details). We used empirical estimates for the 

progression rates between these stages (7), yielding an untreated mean incubation period of 

approximately 10 years (consistent with other findings, e.g. Cooley et al., 1996) (9). For treated 

individuals, we assume the same stages, but with a smaller progression rate between them. We 

also classify individuals by status (k) (1): person does not know he/she are infected (2), person 

known HIV positive but untreated (3), person has initiated HAART but has not yet achieved full 

virologic suppression, and (4) person on HAART and on treatment with the maximum virologic 

suppression he/she will achieve. We let Yjk denote the number of HIV-infected people in stage j 

and status k. We denote the testing rate in stage j at time t by  j t  , the rate o initiating 

suppressive therapy by  j t  , the rate of achieving full virologic suppression by  , the rate of 

discontinuation of therapy for individuals in virologic suppression by  , the progression rate 

among untreated individuals from stage j to stage j+1 by  j  (j=1, 2, 3), and the relative 

progression rate in status k by sk (s1=1, s2=1). Denote the incidence rate by I(t) (assumed 

piecewise constant within each year). Mortality due to non-AIDS causes is assumed to be 

negligible for simplicity. The equations are then 

dYjk
dt

 I t  j1k1 Yj1 j k1 k2  Yj2 j k2 k3   Yj3 k3 k4  

Yj4 k 4 k2  Yjksk j Yj1,ksk j1 1 j1 
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where we separate subscripted indices with a comma when the index is an expression and not a 

single symbol, and ij is a Kronecker delta. Numerical integration using the R package 

“odesolve” allows the matrix elements Fji  to be computed (the initial conditions are Yjk =0 for all 

j and k). 

The numerical parameter estimates were as follows. Testing is assumed to be zero before time 5 

(year 1985); treatment is zero before time 16 (year 1996). The progression parameters were 

derived from Longini et al (1989); γ1=5.49 yr-1, γ2=0.228 yr-1, and γ3=0.191 yr-1. Unfortunately, 

population-based estimates for the testing and treatment rates by race over time are unavailable; 

we assumed that individuals have a testing rate of 0.3 yr-1 prior to AIDS diagnosis (a rate which 

would underestimate the rate for urban men who have sex with men), a rate of cessation of 

antiretroviral therapy of 0.01 yr-1, a rate of 4 yr-1 of achieving full virologic suppression (i.e., a 

mean duration of 3 months before achieving full suppression), and that individuals on full 

suppression only progress at 10% of the rate of untreated individuals (which may in fact be an 

overestimate). In the base case scenario, we chose the rate of treatment in stage j=2 to be ¼ of 

that in stage j=3, and chose the rate in stage 3 so that by 2008, 50% of individuals with HIV but 

no AIDS diagnosis would be on treatment. Because many of these parameters are not well 

characterized, we conducted sensitivity analysis. 

Of particular importance are the rates of treatment and testing by race. For the base case 

scenario, we assumed all rates were identical; the TB rates computed from these denominators 

thus contain no built-in assumption of differential rates of starting therapy. 

We used parametric bootstrap (Efron & Tibshirani [10], p. 53–5) to compute confidence 

intervals for rates (with 100 replications). Specifically, for the denominator data, we assumed the 

estimated race-stratified incubation period over time and simulated AIDS incidence data given 

the random incubation period distribution for each year. We then estimated the HIV incidence 

from these simulated data, and from the HIV incidence, we computed the prevalence as indicated 

above; this yields a set of changing prevalences over time reflecting the expected variability 

given the sample sizes. For each of these, we simulated numerator (TB case) data using an 

independent Poisson distribution whose mean equaled the observed number of cases for the year 

in question, and computed the rate given these simulated numerators and denominators, yielding 

confidence intervals reflecting variability in the numerator and denominator. 
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Confidence intervals from parametric bootstrap do not reflect variability based on modeling 

assumptions. We therefore conducted the following sensitivity analyses (Technical Appendix 

Table 1) (1): assuming (unrealistically) no pre-AIDS treatment at all (2), assuming constant 

treatment rates sufficient to place 90% of HIV patients on HAART prior to diagnosis by 2009 

(3), assuming treatment rates identical to the base case for 1996–2000, but assuming treatment 

rates 20% larger in 2001–2005, and a further 20% larger for 2006 to the present. We also 

conducted sensitivity analyses using different values for the smoothing parameter; values of 0 

lead to wildly unstable estimates and are unsuitable (6). Finally, the 1992 (and earlier) AIDS 

case definition changes were not explicitly modeled; sensitivity analysis in which 10% of cases 

diagnosed in 1992 would have occurred in 1993 and 1994, however, did not substantially change 

our estimates. 

Optimization was conducted by the Nelder-Mead method, using 25 randomly chosen starting 

values to reduce the chance of convergence to a merely local maximum. All calculations were 

conducted by using R v. 2.13 (http://cran.r-project.org) for MacIntosh (Apple, Cupertino, CA, 

USA). 

III. Multiple Imputation 

Multiple imputation allows asymptotically unbiased estimation of missing data under an 

assumption of missing at random conditional on measured variables (11). To recover missing 

values for CD4+ T-lymphocyte count (1,732 of 3,904 [44.4%]) and viral load (2,756 of 3,904 

[70.6%]), we constructed 10 imputation data sets (12) per individual using Stata 12.2 (Stata 

Corporation, College Station, TX, USA) ‘mi’ suite of commands. CD4+ T-lymphocyte counts or 

HIV viral load not recorded or ascertained >6 months prior to TB diagnosis were considered 

“missing.” Demographic (age, sex, race/ethnicity, nationality, homeless status, correctional 

facility) and clinical variables (year of diagnosis, time from initial HIV diagnosis to TB 

diagnosis, time from initial HIV diagnosis to AIDS event, whether TB was the AIDS defining 

event, mode of HIV transmission, vital status at time of TB diagnosis, and tuberculin skin test 

reading) were used to impute missing CD4+ T-lymphocyte count and viral load values. 

Demographic, behavioral, and clinical information, including mortality, were abstracted from 

state surveillance forms (Report of a Verified Case of Tuberculosis, and Adult HIV/AIDS 
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Confidential Case Report). TB was considered the AIDS-defining event if TB and AIDS were 

reported within 6 months of each other. For each individual, regression analysis was done on 

each imputation data set, and results were combined to ascertain estimates by using standard 

multiple imputation techniques (13). CD4+ T-lymphocyte count was square root transformed and 

viral load was log-transformed prior to imputation. In order to avoid working with implausible 

imputations in the analysis, square root transformed CD4+ T-lymphocyte counts with negative 

values were truncated to 1 prior to back-transformation. Multivariate associations with mortality 

obtained following multiple imputation and from an unimputed “complete-case” analysis are 

demonstrated in the main text and below, respectively (Table 3; Technical Appendix Table 2). 

Overall goodness of fit for the complete-case analysis was assessed by using the Hosmer-

Lemeshow test. 

Technical Appendix Table 1. Nonparametric back-calculation sensitivity analyses 

Parameter Value 
TB rate, 1993 TB rate, 2008 

White Black Hispanic White Black Hispanic 
Baseline 0.00 202.30 768.6 680.52 34.80 147.94 224.85 
Rate of testing 1.00 202.41 762.23 678.31 34.70 149.63 225.18 
Treatment rate 0 205.95 775.75 681.67 37.02 160.85 241.66 
Cessation rate 0.02 202.23 776.00 679.28 35.06 150.94 230.03 
Cessation rate 0.01 201.25 772.20 690.99 34.38 149.44 219.84 
Relative progression 0.05 202.22 767.02 681.27 34.49 150.59 224.40 
Relative progression 0.20 203.01 740.13 686.27 35.29 170.58 233.61 
Treatment fraction in 2008 0.90 191.78 743.86 666.52 28.39 118.18 181.25 
Increase rate, 5 y 25% 198.50 776.40 676.98 33.73 148.76 225.58 
Case definition change 0 202.30 769.96 681.12 34.83 151.59 227.94 
 
 
Technical Appendix Table 2. Multivariate analysis of factors associated with deaths among HIV-infected TB patients, California, 
1993–2008* 
Characteristic Adjusted relative risk (95% CI) 
Time period  
 2001–2008 Referent 
 1996–2000 1.07 (0.83–1.36) 
 1993–1995 2.13 (1.71–2.66) 
Age† 1.29 (1.22–1.36) 
Sex, F 1.33 (1.03–1.73) 
Race/ethnicity  
 White, non-Hispanic Referent 
 Black, non-Hispanic 0.85 (0.66–1.09) 
 Hispanic 1.03 (0.77–1.36) 
 Asian/Pacific Islander 0.93 (0.58–1.47) 
Foreign birth 0.68 (0.53–0.88) 
HIV risk group‡  
 MSM Referent 
 IDU 1.08 (0.87–1.34) 
 Heterosexual contact 0.58 (0.39–0.86) 
 Unknown 1.35 (1.08–1.70) 
Sputum smear positivity 1.23 (1.02–1.49) 
CD4+ T-lymphocyte count, 
cells/mm3 

 

 <50 5.21 (2.14–12.64) 
 50-99 3.69 (1.50–9.07) 
 100–199 2.92 (1.20–7.14) 
 200–349 2.25 (0.88–5.80) 
 350–499 Referent 
 >500 1.59 (0.50–5.06) 
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Characteristic Adjusted relative risk (95% CI) 
TB as AIDS-defining diagnosis§ 0.94 (0.78–1.13) 
*Complete-case analysis (CD4+ T-cell counts not imputed. TB, 
tuberculosis; MSM, men who have sex with men; IDU, injection drug use. 
†Per 10 year increase in age. 
‡Categories are mutually exclusive; any IDU was included in the IDU 
category. 
§TB was considered the AIDS-defining event if TB and AIDS were 
reported within 6 months of each other. 
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