This study was partly supported by grants-in-aid from the Ministry of Health, Labour and Welfare of Japan (H22-Shokuhin-Ippan-012, H23-Shinko-Shitei-020, H24-Shokuhin-Ippan-007, and H24-Shokuhin-Ippan-008).

Hidemasa Izumiya, Jun Terajima, Shouji Yamamoto, Makoto Ohnishi, Haruo Watanabe, Akemi Kai, Takayuki Kurazono, Masumi Taguchi, Tetsuo Asai, Masato Akiba, Yuko Matsumoto, and Yutaka Tamura

Author affiliations: National Institute of Infectious Diseases, Tokyo, Japan (H. Izumiya, J. Terajima, S. Yamamoto, M. Ohnishi, H. Watanabe); Tokyo Metropolitan Institute of Public Health, Tokyo (A. Kai); Saitama Institute of Public Health, Saitama, Japan (T. Kurazono); Osaka Prefectural Institute of Public Health, Osaka, Japan (M. Taguchi); National Veterinary Assay Laboratory, Tokyo (T. Asai); National Institute of Animal Health, Ibaraki, Japan (M. Akiba); Yokohama City Institute of Health, Kanagawa, Japan (Y. Matsumoto); and Rakuno Gakuen University, Hokkaido, Japan (Y. Tamura)

DI: http://dx.doi.org/10.3201/eid1905.121395

References

Address for correspondence: Hidemasa Izumiya, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan; email: izumiya@nih.go.jp

Single Genotype of Anaplasma phagocytophilum identified from Ticks, Camargue, France

To the Editor: Granulocytic anaplasmosis is a tickborne zoonosis caused by Anaplasma phagocytophilum bacteria, which are emerging in Europe. Besides infecting humans, A. phagocytophilum infect a wide range of wild and domestic mammals (1). In Europe, the Ixodes ricinus tick is the main vector for the bacteria, but A. phagocytophilum has also been detected in association with Rhipicephalus and Dermacentor spp. ticks (2). The climate and biotopes of the Mediterranean region are particularly favorable for several species of ticks and, therefore, for tickborne diseases.

Although I. ricinus ticks are rare or absent in the Mediterranean Basin, serosurveys performed on equine populations in Camargue, southern France, indicated an A. phagocytophilum seroprevalence of ≈10% (3). To investigate the prevalence and diversity of A. phagocytophilum bacteria in ticks in Camargue, we collected questing ticks from horse pastures and feeding ticks from horses.

Ticks feeding on horses were collected in randomly selected stables during 2007 (84 stables), 2008 (72 stables), and 2010 (19 stables). The stables were chosen among those where evidence of A. phagocytophilum seroconversion in horses had been previously found (3). In 2008 and 2010, questing ticks were collected by the dragging method in 19 pastures, around bushes, and in areas where horses spent the most time. Surveys were conducted in the spring, which represents the peak activity time of Ixodes ticks.

A total of 406 adult ticks were collected, representing 6 species: Rhipicephalus bursa, R. sanguineus, R. turanicus, R. pusillus, Dermacentor marginatus, and Hyalomma marginatum. Tick species were identified by morphologic criteria and molecular analyses based on mitochondrial 12S rDNA sequences (4). Total DNA was extracted from the ticks by using the NucleoSpin Tissue Kit (Macherey-Nagel, Düren, Germany) (5). A. phagocytophilum was detected by nested PCR targeting the 16S rDNA (online Technical Appendix 1, wwwnc.cdc.gov/EID/article/19/5/12-1003-Techapp1.pdf).

Of the 406 ticks, 40 were infected with A. phagocytophilum. The infected group included ticks from all 6 collected species except R. pusillus. Infection rates among the species ranged from 0 to 22% (online Technical Appendix 2, wwwnc.cdc.gov/EID/article/19/5/12-1003-Techapp2.pdf). The prevalence of A. phagocytophilum infection did not differ significantly between species (logistic regression model, p = 0.76) but was higher among questing ticks than feeding ticks (p<0.001; odds ratio 1.15).
LETTERS

We amplified 6 loci by nested PCR (online Technical Appendix 1) to characterize *A. phagocytophilum* genetic diversity in positive samples: *ankA*, *msp4*, *pleD*, *typA*, and intergenic regions *hemE*–*APH_0021* and *APH_1099*–*APH_1100* (National Center for Biotechnology Information annotation). The GenBank accession numbers for the nucleotide sequences are JX197073–JX197368. No polymorphism was found among the 6 loci tested in the 40 *A. phagocytophilum*–positive ticks. The genotype identified was 100% identical to the reference sequence (NC_007797) for *msp4*, *pleD*, and *typA* and for intergenic regions *hemE*–*APH_0021* and *APH_1099*–*APH_1100*. The *ankA* sequence was 96% similar (487 nt) to the reference sequence. The relevance of these loci as markers of diversity was verified (online Technical Appendix 3, wwwnc.cdc.gov/EID/article/19/5/12-1003-Techapp3.pdf).

To study the phylogenetic relationships between cognate sequences, we included in our analysis all sequences available in GenBank for genes *ankA* and *msp4*. To account for recombination events that affect *ankA* and *msp4* (data not shown) in phylogenetic analyses, we used NeighborNet networks (Figure). Phylogenetic analysis of *msp4* (Figure, panel A) indicated the genotype of *A. phagocytophilum* from ticks in Camargue was included in a clade that also includes genotypes that infect humans and horses in the United States. The diversity of *ankA* sequences has been described as 4 phylogenetic clusters (6). All sequences obtained in our study were included in cluster I, particularly in a branch composed exclusively of sequences of *A. phagocytophilum* isolated from humans in the United States (Figure, panel B).

Previous studies investigating *A. phagocytophilum* have revealed a genetic diversity that is thought to have been caused by sympatric epidemiologic cycles involving different vectors and reservoir hosts (1,6,7). In 5 species of ticks (40 ticks total) that we collected from a 250-km² area in southern France, we found only 1 genotype of *A. phagocytophilum*, which we determined to be phylogenetically close to genotypes found in the United States. Sequences phylogenetically related to bacteria in the United States were also observed in Sardinia (8) and Sicily (9).

Figure. Phylogenetic networks of *Anaplasma phagocytophilum* based on *msp4* (A) and *ankA* (B) genes and built with SplitsTree4 (version 4.11.3; http://splitstree.org/) by the Neighbor-Net method. The sequences of the genotype described in Camargue, France, is framed. Sequences found in the 2 networks are in **boldface**: *A. phagocytophilum* amplified from ticks collected in Combrailles, Auvergne region, France (JX197116–JX197126 and JX197265–JX197270), a human isolate (strain Webster, EU857674 and GU236811), an American roe deer isolate (strain CRT, JX197261 and JX197113), and an *American horse isolate* (strain MRK, AY530196 and AF153716). Scale bars indicate number of nucleotide substitutions per site.

![Phylogenetic networks of Anaplasma phagocytophilum](image-url)
The low diversity we found could be explained by a recent introduction of the bacteria into the area [although *A. phagocytophilum*–seropositive horses have been found in the area since 2001 (3)] or by a selective sweep linked to the particular ticks and host reservoir in Camargue. The 5 species of ticks that we found positive for *A. phagocytophilum* have been described as potential vectors of *A. phagocytophilum* in the Mediterranean Basin (2,10). Among the tick species in our investigation, *R. bursa* and *R. sanguineus* ticks are the 2 main carriers of *A. phagocytophilum*, and these ticks are likely to feed on humans and, thus, pose a risk of infection to the local population. Further studies are needed to address the potential effect of *A. phagocytophilum*–infected ticks on human health in this area and, more specifically, the relationship between genotype and pathogenicity.

Acknowledgments

We thank Curtis Nelson and Friederike von Loewenich for generously providing the DNA of strains HGE1, CRT, and Webster; Véronique Bachy for actively helping us to obtain samples from domestic animals; Magalie René-Martellet and Frédéric Beugnet for helping with the morphological identification of ticks; Gillian Martin for proofreading the manuscript; Nelly Dorr for creating the databases used in this study; and Françoise Rieu-Lesme and Sébastien Masséglia who were involved in laboratory work.

Amélie Chastagner,
Xavier Bailly, Agnès Leblond,
Sophie Pradier,†
and Gwenaëll Vourc’h

Author affiliations: National Center for Biotechnology Information (INRA), Saint Genèse Champanelle, France (A. Chastagner, X. Bailly, A. Leblond, G. Vourc’h); University of Lyon, Marcy l’Etoile, France (A. Leblond); Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France (S. Pradier); and INRA ENVAS ANSES, Maisons-Alfort (S. Pradier)

†Current affiliation: Ecole Nationale Vétérinaire de Toulouse, Toulouse, France.

DOI: http://dx.doi.org/10.3201/eid1905.121003

References

Address for correspondence: Amélie Chastagner, INRA, UR346 Épidémiologie Animale, Centre de Recherches de Clermont-Ferrand/Theix, F-63122 Saint Genès Champanelle, France; email: amelie.chastagner@clermont.inra.fr

West Nile Virus Lineage 2 Strain in Greece, 2012

To the Editor: West Nile virus (WNV) has been in Europe at least since the 1960s (1). Before 2010, WNV epidemics in Europe were caused mainly by lineage 1 strains. However, in 2010, a major WNV epidemic in Central Macedonia, Greece, was caused by a lineage 2 strain (Nea Santa-Greece-2010) (2).

This strain also circulated during 2011 (3), causing a second epidemic among humans throughout the country (4). Although the virus was closely related to the goshawk-Hungary-2004 strain circulating in Hungary, Austria, and Italy (5–7), severe epidemics occurred only in Greece; 273 cases of West Nile neuroinvasive disease (WNND) in humans were reported during the 2 seasons (2,4).

A third epidemic occurred in 2012, and 109 WNND cases were reported (8). Until mid-August, most cases were in central (Attica; 29 cases) and northeastern Greece (East Macedonia and Thrace; 10 cases). In contrast, during the same period, only 3 cases were confirmed at the location of the 2010 epidemic epicenter, in Central Macedonia (9). This situation led to the question of whether the Nea Santa-Greece-2010 strain was responsible for the third epidemic in Greece.
Single Genotype of *Anaplasma phagocytophilum* Identified from Ticks, Camargue, France

Technical Appendix 1

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequences (5′–3′)</th>
<th>Annealing temperature (°C)</th>
<th>Fragment length (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16S_ external *</td>
<td>ge3a CACATGCAAGTGCAAGGATATTC TTCCGTAAAGGGATCTAATCTCC ge10r</td>
<td>58</td>
<td>932</td>
</tr>
<tr>
<td>16S_ internal *</td>
<td>ge9f AGCGTTATCTTTATAGCTTGCT GCAGATTAAAAGCAGCTGCCAG ge2r</td>
<td>58</td>
<td>544</td>
</tr>
<tr>
<td>ankA - external</td>
<td>forward TGAACCTTACCCGCGAGCATG reverse CTCTGCCTTGGCGGAGCCCG</td>
<td>72</td>
<td>540</td>
</tr>
<tr>
<td>ankA - internal</td>
<td>forward CTACCCGCGACGATCGTG reverse GTTGCTGGAGGCCCCCTTTATCC</td>
<td>66</td>
<td>534</td>
</tr>
<tr>
<td>msp 4 - external</td>
<td>forward TGGCGTCGATAGTCGGGTCA reverse GAGCTCCACACCACCTCGGT</td>
<td>66</td>
<td>1300</td>
</tr>
<tr>
<td>msp 4 - internal †</td>
<td>forward TTAATTTGAAGCAGTTTCTGCTCTATG reverse ATGAATTACAGAGAATTGGTTT</td>
<td>66</td>
<td>849</td>
</tr>
<tr>
<td>pleD - external</td>
<td>forward ACAAGTGGCGCTGAAGGATT reverse TCCGTCTGGCTCGTCGTA</td>
<td>68</td>
<td>1101</td>
</tr>
<tr>
<td>pleD - internal</td>
<td>forward TGCACCTTGCAGAGTCGGGT same of pleD-external reverse</td>
<td>69</td>
<td>576</td>
</tr>
<tr>
<td>typA - external</td>
<td>forward CCGGCGATCTTGAGCTCGG reverse CGGCGGGAATCTAACCTCACAG</td>
<td>66</td>
<td>1455</td>
</tr>
<tr>
<td>typA - internal</td>
<td>forward TGCCTCTGGAGTCGGGTGTTA reverse AGCCCTTTCCAGCCCTGCAAC</td>
<td>66</td>
<td>1070</td>
</tr>
<tr>
<td>hemE - aph0021 - external</td>
<td>forward GCGATCTGGCCAGAAAGGTAATT reverse AGCCCTTTCCAGCCCTGCAAC</td>
<td>66</td>
<td>537</td>
</tr>
<tr>
<td>hemE - aph0021 - internal</td>
<td>forward AGCGCTGTGTCTCTCTTGTTA reverse AGAGAGCCGCGCTCCAGCGA</td>
<td>66</td>
<td>1453</td>
</tr>
<tr>
<td>aph1099-aph1100 - external</td>
<td>forward TGGACATCTCAGCGCTGGGTGTTA reverse GGCACCTTGCCGCAAAGAAGG</td>
<td>69</td>
<td>574</td>
</tr>
</tbody>
</table>

All fragments were amplified by nested PCR. For the first PCR, each reaction contained 40 ng of total DNA in a solution of 25 µL with 1 U of Taq polymerase (Qiagen), 2 µL of each primer at 10 µM, 2 µL of dNTP at 25 mM, 5 µL of Q solution (Qiagen) and 1 µL of MgCl₂ at 25 mM. Tests were performed to choose optimal annealing temperatures. The PCR program began by an initial denaturation step of 3 min at 95°C, then 40 cycles consisted of a denaturing step of...
30 s at 94°C, an annealing step of 30 s at the temperature corresponding to the target gene (see Table 2) and an extension step of 90 s at 72°C, and finally an extension step of 10 min at 72°C. The nested PCR was performed with 5 µL of the first PCR product in a total volume of 50 µL containing 2 U of Taq polymerase, 4 µL of each primer at 10 µM and 4 µL of dNTP at 25 mM. Nested cycling conditions were as described for the primary amplification.
Single Genotype of *Anaplasma phagocytophilum* Identified from Ticks, Camargue, France

Technical Appendix 2

Number (%) of collected ticks positive for *Anaplasma phagocytophilum*, Camargue, France, 2007–2010

<table>
<thead>
<tr>
<th>Genus spp.</th>
<th>Ticks questing in pastures</th>
<th>Ticks feeding on horses</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhipicephalus bursa</td>
<td>3/12 (25)</td>
<td>19/247 (7.7)</td>
<td>22/259 (8.5)</td>
</tr>
<tr>
<td>Rhipicephalus sanguineus</td>
<td>11/53 (20.7)</td>
<td>2/58 (3.4)</td>
<td>13/111 (11.7)</td>
</tr>
<tr>
<td>Rhipicephalus turanicus</td>
<td>2/4 (50)</td>
<td>0/5 (0)</td>
<td>2/9 (22.2)</td>
</tr>
<tr>
<td>Rhipicephalus pusillus</td>
<td>0/9 (0)</td>
<td>0/1 (0)</td>
<td>0/10 (0)</td>
</tr>
<tr>
<td>Dermacentor marginatus</td>
<td>1/3 (33.3)</td>
<td>1/9 (11.1)</td>
<td>2/12 (16.7)</td>
</tr>
<tr>
<td>Hyalomma marginatum</td>
<td>0/0 (0)</td>
<td>1/5 (20)</td>
<td>1/5 (20)</td>
</tr>
</tbody>
</table>
Single Genotype of *Anaplasma phagocytophilum* Identified from Ticks, Camargue, France

Technical Appendix 3

Verification of the nucleotide diversity of *Anaplasma phagocytophilum*, as calculated by use of the Watterson estimator

To verify the relevance of our loci as markers of *A. phagocytophilum* diversity, we compared the nucleotide diversity of *A. phagocytophilum* found in questing ticks collected in Camargue, France, with that found in 6 questing *Ixodes ricinus* ticks collected in the Combrailles (Auvergne, Central France, HALOS 2010 [1]); and with the totality of studied sequences that include 2 cognate sequence obtained in diseased horses from France, 2 American human strains (HGE and Webster), and 1 American roe deer strain (CRT).

The nucleotide diversity was calculated with the Watterson estimator:

\[\theta = K \sum_{i=1}^{n-1} \frac{1}{i} \]

with K the proportion of single nucleotide polymorphisms in the sequences. Diversity in Combrailles ticks showed that the markers used in this study were appropriated to describe significant level of diversity (see graph on following page).
Nucleotide diversity of *Anaplasma phagocytophilum* calculated with the Watterson estimator. *n:* number of sequences analyzed and Φ indicates the zero values. Error bars indicate upper limit of the standard deviation of the Watterson estimator.

Reference