To the Editor: Marine bacteria of the family Shewanellaceae, genus *Shewanella*, are gram-negative, motile bacilli that grow aerobically or anaerobically and produce hydrogen sulfide (1). Organisms belonging to a *Shewanella* species were first isolated in 1931 by Derby and Hammer from dairy products and classified as *Acro-ombo bacter putrefaciens*. Members of *Shewanella* species usually are found in marine environments in warm climates or during summer in temperate climates (3). In humans, most *Shewanella* species infections occur in skin and soft tissues (4). One species (*S. algae*) and possibly a second (*S. putrefaciens*) have been isolated from human samples on multiple occasions (5). A third species, *S. haliotis*, was implicated in human infections during 2010 (6) and *S. xiamenensis* was reported as the fourth infectious species among humans during 2011 (7).

A. putrefaciens was isolated from the gut microflora of abalones (*Halitosis discus hannai*) in 2007 (8). We report the second description, to our knowledge, of *S. haliotis* involved in human disease.

In September 2012, a 52-year-old woman, living in Bangkok, Thailand, was hospitalized after experiencing drowsiness for 2 hours. She had a low-grade fever, chills, and swelling, erythema, and tenderness in her left leg. During the previous week, she had handled fresh seafood in a market and had eaten cooked mackerel. She denied having eaten uncooked food or wading into flooded areas or the sea. She had undergone orthotopic liver transplantation 6 months previously to excise hepatocellular carcinoma related to Child-Pugh class C hepatitis C cirrhosis; since that procedure, she had been under treatment with immunosuppressive drugs. She also had diabetes, hypertension, and nephrotic syndrome. Physical examination revealed that in addition to above-named symptoms, multiple blisters were noted (Figure, panel A). Her oral temperature was 37.8°C, blood pressure 80/40 mm Hg, pulse was 110 bpm, and respiratory rate was 24 breaths/minute. A complete blood count showed a leukocyte count of 2,250 cells/μL (91.2% neutrophils). Despite adequate rehydration, monitored by central venous pressure, the patient required norepinephrine to stabilize her vital signs.

Shewanella haliotis
Associated with Severe Soft Tissue Infection, Thailand, 2012

As a result of tissue cultures and submitted samples for microbiological analysis, shock resuscitation and an emergency fasciotomy (Figure, panel B) were performed, and antimicrobial drug treatment with meropenem and vancomycin was started. Surgeons did not confirm the suspected necrotizing fasciitis. Two sets of blood cultures and fluid culture samples from the left leg identified *S. algae* by conventional biochemical methods. The MICs of antimicrobial drugs were determined by Etest (bio-Mérieux, Solna, Sweden). This strain was susceptible to ciprofloxacin (0.25

References

S. haliotis gene sequence showed clustering with phylogenetic analysis of the 16S rRNA from PCR product (JX968803). PhyloTechapp.pdf) and direct sequencing cdc.gov/EID/article/19/6/12-1607-Technical Appendix Table, wwwnc. species consensus primers (online la
Shewanell -16S rRNA gene sequencing was per-
rRNA gene sequencing. The strain was confirmed by using 16S identified by routine biochemical tests, isolation of mannose, glucose, arabinose, mannitol, maltose, adipate, and acidification of glucose. This strain was resistant to polymyxin B (300 μg/disc).

More than 50 species of Shewanella have been reported. The route of Shewanella infection is associated with direct contact with the organism through seawater or ingestion of raw seafood (9). Japan reported 1 case of S. haliotis infection in an elderly patient in whom Vibrio vulnificus infection was initially suspected (6), and various clinical manifestations of S. algae infection have been reported (5). Community- and hospital-acquired infection with Shewanella species from contaminated medical devices have also been reported (10). S. haliotis and S. algae are closely related organisms; discriminating between them on the basis of biochemical tests is difficult. Molecular characterization of 16S rRNA gene sequencing can be used to differentiate the 2 species. In summary, this case suggests that immune-compromised persons in tropical climates could be susceptible to S. haliotis soft tissue infection in the absence of typical exposures.

Acknowledgments

We thank the staff of the Gastroenterology Unit, Department of Medicine, Liver Transplant Unit, Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University and Hospital, and the Thai Red Cross Society. We also thank Petra Hirsch for reviewing the manuscript.

This work was supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (HR1155), Thailand Research Fund (DPG5480002), Center of Excellence in Clinical Virology, Chulalongkorn University, Integrated Innovation Academic Center, Chulalongkorn University Centenary Academic Development Project (CU56-HR01), and King Chulalongkorn Memorial Hospital.

Kittiyod Poovorawan, Tanittha Chatsuwan, Narisorn Lakananurak, Jira Chansaenroj, Piyawat Komolmit, and Yong Poovorawan

Author affiliation: Chulalongkorn University, Bangkok, Thailand

DOI: http://dx.doi.org/10.3201/eid1906.121607

References

1. Ivanova EP, Flavier S, Christen R. Phylo
Murine Typhus in Humans, Yucatan, Mexico

To the Editor: Rickettsia typhi is the causal agent of murine typhus, a febrile illness affecting humans worldwide (1). In Mexico, recent studies demonstrated a 14% prevalence of antibodies against typhus group rickettsiae in healthy adult blood donors in Mexico City, and a recent nonfatal case of endemic typhus was reported in Yucatan (2,3).

In May 2011, a 42-year-old woman and her 12-year-old son sought care at the clinical service of the Autonomous University of Yucatan. They had malaise, headache, fever (39°C), fibromyalgia, sore throat, and fatigue and an erythematous rash on the chest that after 6 days spread to the abdomen and extremities.

Dengue fever was diagnosed, and the patients were treated empirically with acyclovir, methanesulfonamide, N-(4-nitro-2-phenoxyphenyl)amide, N-(4-nitro-2-phenoxyphenyl)amide, and clarithromycin. Dengue could not be confirmed by laboratory testing.

Murine typhus was diagnosed on the basis of PCR amplification and immunofluorescent assay for antibodies to R. typhi. Rickettsia species was determined by sequencing of rickettsial genes. Three serum samples were collected from the woman (8, 12, and 16 days after illness onset) and 1 from the boy (8 days) in 3.8% sodium citrate as anticoagulant, and DNA was extracted immediately by QIAamp DNA Blood Mini Kit (QIAGEN Valencia, CA, USA) in accordance with the manufacturer’s instructions. Single-step PCR amplification was performed by using genus-specific primers for the rickettsial 17-kDa protein and citrate synthase (gltA) genes as reported (4).

Sequences of the citrate synthase and 17-kDa PCR products were compared at the National Center for Biotechnology Information BLAST software (5). Three PCR amplicons of both genes were fully sequenced and compared with sequences in GenBank. The 17-kDa and citrate synthase fragment sequences (GenBank accession nos. JX198507 and JX458814) showed 99% and 100% identity, respectively, with R. typhi strain Wilmington strain (GenBank accession no. AE017197.1) (Table).

Immunofluorescent assay was performed by using R. rickettsii and R. typhi antigen fixed on slides. We examined the serum samples for IgG and IgM, assessing reactivity of γ chain–specific and m heavy chain–specific secondary conjugates, respectively, with rickettsial antigens. All 3 samples from the woman and the sample from the boy contained antibodies to R. typhi (Table). Both patients were treated with 100 mg of oral doxycycline 2×/day for 7 days (boy), and 10 days (woman); symptoms improved in 72 hours for the child. The woman’s symptoms resolved completely in 5 days.

Typhus has been endemic in Mexico since before the conquest period (6). Socioeconomic aspects play a major role in zoonotic diseases, such as rickettsioses, especially in their distribution in urban and suburban areas because of factors such as marginalized communities, animal breeding, education levels, poverty, and social exclusion from health systems. Overcrowding resulting from migration from rural areas to large urban centers contributes to increased zoo- noses in urban areas. Also contributing is the ecological imbalance of flora and fauna associated with deteriorating sanitary conditions in areas where mammals involved in the cycle of R. typhi, such as rodents and opossum, may live in the same habitat as humans and colonize backyards, waste deposit area, and areas around the neighborhoods where they can find food. The concurrence and presence of mammals, vectors, and humans may contribute to maintaining transmission of endemic typhus in a reduced area, with the possibility to cause outbreaks.

Address for correspondence: Yong Poovorawan, Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330 Thailand; email: Yong.P@chula.ac.th

The opinions expressed by authors contributing to this journal do not necessarily reflect the opinions of the Centers for Disease Control and Prevention or the institutions with which the authors are affiliated.
Shewanella haliotis Associated with Severe Soft Tissue Infection, Thailand, 2012

Technical Appendix

Specific *Shewanella* Consensus Primer Sets for 16S rRNA Gene Sequencing and Phylogenetic Analysis

Technical Appendix Table. Specific *Shewanella* consensus primer sets for 16S rRNA gene sequencing performed during investigation of soft tissue infection, Thailand, YEAR.

<table>
<thead>
<tr>
<th>Round</th>
<th>Primer name</th>
<th>Sequence (5'→3')</th>
<th>Product (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>shew16s_99F</td>
<td>CGA GCG GCG GAC GGG TGA G</td>
<td>1,327</td>
</tr>
<tr>
<td></td>
<td>shew16s_1426R</td>
<td>CCA CTC CCA TGG TGT GAC G</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>shew16s_349F</td>
<td>GGA GGC AGC AGT GGG GAA</td>
<td>1,077</td>
</tr>
<tr>
<td></td>
<td>shew16s_1428R</td>
<td>CCA CTC CCA TGG TGT GAC G</td>
<td></td>
</tr>
</tbody>
</table>
Technical Appendix Figure. Phylogenetic analysis of *Shewanella* spp. 16S rRNA gene sequencing (1,077 base pairs). Closed circle indicates the strain in this study compared with the *S. haliotis* prototype species (NR_044134) and other representative species. Numbers at branch nodes are bootstrap values. Scale bar represents number of nucleotide substitutions per site.