increased during the past 13 years (6). This trend is accompanied by an increase in the total number of periprosthetic joint infections, even though the overall percentage of this complication is low (7). The most commonly isolated organisms in periprosthetic joint infections are gram-positive cocci, specifically *Staphylococcus aureus* and *S. epidermidis* (8). In a retrospective review, Moran et al. (9) examined the microbiological spectrum of 112 patients undergoing debridement and irrigation for a periprosthetic joint infection (hip [52], knee [51], elbow [4], ankle [3], shoulder [2]) at a tertiary care center in the United Kingdom during 1998–2003. The most frequently isolated microorganisms were coagulase-negative staphylococci (47%) followed by methicillin-sensitive *S. aureus* (44%), methicillin-resistant *S. aureus* (8%), aerobic gram-negative organisms (8%), and anaerobes (7%). Thirty-seven percent of patient specimens grew multiple microorganisms.

We document the ability of *B. extracta* to cause an infection beyond its usual habitat, the oral flora. We hypothesize that the infection in this patient might have developed from hematogenous seeding in which an undiscovered and asymptomatic oral infectious nidus might have served as the seeding focus while mild trauma to the hip could have facilitated access to the joint space.

Acknowledgments

The authors thank Daniel R. Gustafson and the outstanding staff of the Mayo Clinic anaerobic bacteriology laboratory for identification of this patient’s bacterium.

Support was provided solely from institutional and departmental sources (Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN).

Dr Patel receives research support as a principal investigator from Pfizer, Prada-ama, Tornier, Pocared, and Astellas. She also owns patents on a method and apparatus for device sonication (but has relinquished her rights to receive royalties), an anti-biofilm substance, and *Bordetella pertussis/parapertussis* PCR.

Benjamin Kloesel,
Margaret Beliveau, **Robin Patel,**
Robert T. Trousdale, and **Irene G. Sia**

Author affiliation: Mayo Clinic, Rochester, MN, USA

DOI: http://dx.doi.org/10.3201/eid1907.130078

References

Address for correspondence: Irene G. Sia,
Division of Infectious Diseases, Mayo Clinic,
200 First Street SW, Rochester, MN 55904,
USA; email: sia.irene@mayo.edu

Tick-borne Encephalitis Virus, Zealand, Denmark, 2011

To the Editor: In Scandinavia, the incidence of tick-borne encephalitis (TBE) is increasing and expanding its geographic range (1). TBE virus (TBEV) types TBEV-Eur and TBEV-Sib occur in Estonia and Finland, along with 2 tick species, *Ixodes persulcatus* and *I. ricinus*. In Denmark, TBE has been reported since the 1950s only from the isolated Bornholm Island in the Baltic Sea with an incidence of ≤4 cases per 100,000 persons (2). Statistically climate-matching models based on the known spatial distribution of TBEV indicate that the present North Zealand climate also would support TBEV-Eur transmission cycles (3). Recently (2008 and 2009), we reported TBE in 2 persons who had histories of tick-bite and originated from a single location in a small forest area (Tokkekøb Hegn) in North Zealand where TBE was previously unrecognized (4).

To determine whether TBE was established in this possibly new TBE focus in mainland Denmark outside Bornholm, we collected ticks by flagging (4) from 3 sites at Tokkekøb during June–July 2011. The 3 sites yielded 896 ticks (854 nymphs, 22 male adults, 20 female adults) in 24 pools. A fourth site at Grib Forest 10 km to the north yielded 198 ticks (183 nymphs, 9 male adult, 6 female adults) in 13 pools.
Flagging was repeated in September 2011 at Tokkekøb to confirm the presence of TBEV and to obtain material suitable for virus isolation. Here, we obtained 7 pools (100 nymphs each) and 1 pool with adults (15 male, 15 female). In September 2011, we also obtained 13 pools (738 nymphs, 37 male adults, 41 female adults) at 3 suspected TBE locations on Bornholm Island. In addition, 1,073 ticks in 58 pools were collected in 2010 and 2011 from deer inspected by the National Center for Wildlife Health from 54 various locations (Figure, panel A). All ticks were identified as *I. ricinus* on the basis of morphology. For TBEV-specific real-time PCR (5), ticks were homogenized in 0.5 mL nucleic acid extraction buffer and RNA/DNA extracted from 0.2 mL homogenate by using the MagNA Pure total NA kit (Roche, Indianapolis, IN, USA). Three of 37 pools (2 with nymphs, 1 with adult females) from Tokkekøb were TBEV RNA positive. None of 58 tick pools from other locations in Denmark or Bornholm were positive for TBEV but contained other pathogens (6). Five of the 8 pools obtained from the second flagging session (all nymphs) in Tokkekøb were TBEV PCR positive, and 2 yielded isolates (T2, T3) in VeroB4 cell culture. Considering that the duration of the nymphal stage in *I. ricinus* is usually only 1 or 2 years in northern Europe (7), the repeated identification of TBEV in nymphs at the same location in 2009 and 2011 indicates establishment of a new focus of endemic TBEV in Denmark.

Phylogenetic analysis of TBEV-E sequences (1,488 nt) of central European (8) and Scandinavian TBEV strains did not group the Zealand isolate T2 (T3 was not sequenced) with the Bornholm strain but into a subclade with 2 isolates from Sweden, Torö-2003 (9) (GenBank accession no. DQ401140) and Saringe-2009 (GenBank accession no. KC469073); an isolate from Norway (GenBank accession no. EF565947), and isolates from North Bohemia (Czech Republic). The Bornholm strain located into a different subclade containing various sequences from South and Central Bohemia (Figure, panel B). TBEV sequences from the Baltics and Finland locate to a spate clade. The missing link between the isolates from Bornholm and Zealand also was observed in a median joining network analysis (Splits Tree program, Epsilon1 [www.splitstree.org], 2,000 iterations [data not shown]).

Two severe clinical cases of TBE connected to this new focus occurred in 2008–2009 (4). To search for additional missed clinical TBE cases from this area, we examined serum and cerebrospinal fluid of 96 patients (2007–2009) in whom encephalitis developed after tick bite; these samples were found negative for *Borrelia* spp. by antibody ELISA and PCR (online Technical Appendix, wwwnc.cdc.gov/EID/article/19/7/13-0092-Techapp1.pdf). To assess anti-TBEV seroprevalence, we also tested serum from 78 patients experiencing “summer flu” who had histories of tick bite; this serum was submitted by general practitioners in North Zealand during July–November 2010 (online Technical Appendix). Except for 1 patient infected in Bornholm and 2 patients infected in Sweden, none were

Figure. A) Tick collection areas in Denmark. Red indicates ticks sampled from animals; blue indicates flagging. B) Neighbor-joining phylogenetic analysis of a 1,488-nt set of 78 tick-borne encephalitis virus (TBEV)–Eur E gene sequences including reference strains Neudoerfl (Austria) and Hypr 71 (South Moravia) performed in ClustalW with a 1,000 bootstrap approach (LASERGENE, MEGALIGN, DENDROSCOPE) outgrouped to Louping ill virus (data not shown). Sequence designations of central European strains as in (8). Dark gray indicates Denmark Bornholm clade; white indicates Swedish-Norwegian clade. For simplicity, some subtrees were collapsed; these are designated with region and number of sequences in the collapsed subtree in brackets.
positive by ELISA (Enzygnost Anti-
TBE/FSME Virus [IgG, IgM] Siemens,
Erlangen, Germany) or PCR (online
Technical Appendix). Since the 1980s,
Sweden has experienced a 4-fold in-
crease in human TBE incidence, with
spread southwest (10). The emergence
of the TBEV strain T2 closely related
to isolates from Sweden may be a con-
tinuation of this geographic trend. A
previous antibody study found 3 deer
positive for TBEV in Zealand-Falster
(2); however, without convincing
neutralization data, this finding is not
confirmed. The lack of TBEV viremia
and seropositivity among the patients
in Zealand who had histories of tick
bites supports a recent introduction to
the new focus. Thus, 2 distinct intro-
ductions of TBEV have occurred in
Denmark. The underlying environ-
mental or climatic factors driving this
geographic trend remain unknown.

Acknowledgment
We thank Anne Lyhning Jensen for
expert technical assistance.

Baxter Denmark provided financial
support for this study.

Anders Fomsgaard,
Mette E. Fertner,
Sandra Essbauer,
Alex Y. Nielsen, Stefan Frey,
Pontus Lindblom,
Per-Eric Lindgren,
Rene Bødker,
Manfred Weidmann,
and Gerhard Dobler

Author affiliations: University of Southern
Denmark, Odense, Denmark (A. Foms-
gaard); Statens Serum Institut, Copenha-
gen, Denmark (A. Fomsgaard, M.E. Fertner,
A.Y. Nielsen); Institut für Mikrobiologie der
Bundeswehr, Munich, Germany (S. Essbauer,
S. Frey, G. Dobler); Linköping University,
Linköping, Sweden (P. Lindblom, P.-E. Lind-
gren); Technical University of Denmark,
Copenhagen (R. Bødker); and Abteilung
Virologie, Universitätsmedizin Göttingen,
Göttingen, Germany (M. Weidmann)

DOI: http://dx.doi.org/10.3201/eid1907.130092

References

1. Jääskeläinen AE, Tonteri E, Sironen T,
Pakarinen L, Vaheri A, Vapalahi O. European
subtype tick-borne encephalitis virus in
Ixodes persulcatus ticks. Emerg Infect Dis.
.org/10.3201/eid1702.101487

2. Skarpbidinson S, Jensen PM, Kristiansen
K. Survey of tick-borne infections in Den-
http://dx.doi.org/10.3201/eid1107.
041265

3. Randolph SE, Rogers DJ. Fragile trans-
mission cycles of tick-borne encephalitis
virus may be disrupted by predicted climate
http://dx.doi.org/10.1098/rspb.2000.1204

4. Fomsgaard A, Christiansen CB, Bød-
ker R. First identification of tick-borne
encephalitis virus in Denmark outside of
2009;14 pii:19326.

5. Schweiger M, Cassinotti P. Development
of a quantitative real-time RT-PCR assay
with internal control for the laboratory
detection of tick borne encephalitis virus
45. http://dx.doi.org/10.1016/S1386-6532
(02)00168-3

6. Fertner ME, Molbak L, Boye Pihl TP,
Fomsgaard A, Bødker R. First detection
of tick borne “Candidatus Neoehrlichia
mikurensis” in Denmark 2011. Euro Surve-
ill. 2012;17 pii:20096.

8. Weidmann M, Ruzek D, Krivanec K,
Relation of genetic phylogeny and
geographical distance of tick-borne en-
cephalitis virus in central Europe. J Gen
10.1099/vir.0.032417-0

Detection strategies of tick-borne encephalitis
in Swedish Ixodes ricinus reveal evolutional
characteristics of emerging tick-borne flavivirus. Arch Vi-
.org/10.1007/s00705-006-0922-9

10. Jaenson TGT, Hjertqvist M, Bergström
T, Lundkvist A. Why is tick-borne
encephalitis increasing? A review of the
key factors causing the increasing
incidence of human TBE in Sweden.
.org/10.1186/1756-3305-5-184

Usutu Virus in Migratory Song
Thrushes, Spain

To the Editor: Usutu virus (USUV), a member of the Japanese
encephalitis virus antigenic group, was first detected in 1959 in
mosquitoes in South Africa (1), and it emerged in 1996 in blackbirds
(Turdus merula) in Italy (2). Recent cases of USUV infection in asymptom-
atic blood donors (3) and severe disease in immunocompromised persons (4)
have shown its zoonotic potential.

Epidemiology and molecular phylogeny of USUV isolated in Italy,
Austria, Hungary, Switzerland, and Germany suggest that stable endemic
mosquito–bird cycles have been established in Europe (5,6). Where
active vector surveillance programs exist, USUV is detected in mosquitoes
before bird deaths and human infections. USUV strains similar
to African strains were detected in mosquitoes in Spain in 2006 and
2009 (7,8).

In November 2012, two live song
thrushes (Turdus philomelos) with
central nervous system signs were
recovered from a die-off of ≈10 birds
at a hunting estate in southern Spain.
A full necropsy was conducted on the
2 thrushes (which died shortly after
capture), and samples were collected
for virus detection and histopathologic
examination. Total RNA was extracted
from oral and cloacal swab specimens,
from serum from a cardiac blood
clot, and from heart, kidney, spleen,
and brain tissues by using High Pure
RNA Tissue Kit (Roche Diagnostics,
Barcelona, Spain) and analyzed
against USUV sequences. Non coding
regions of USUV were generated by
techniques of nested reverse
transcription PCR (RT-PCR) and
by a generic conventional nested
flavivirus RT-PCR (9). The product of
the first PCR (1,048 bp) was
resin purified, cloned into pGEM-T
(Promega, WI, USA), and sequenced.
Tick-borne Encephalitis Virus, Zealand, Denmark, 2011

Technical Appendix

Technical Appendix Table. Overview of serum samples collected and tested for tick-borne encephalitis virus and antibodies in Denmark outside Bornholm, 2011

<table>
<thead>
<tr>
<th>Variable</th>
<th>Borelia samples</th>
<th>Summer flu samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. samples</td>
<td>96</td>
<td>79</td>
</tr>
<tr>
<td>No. patients</td>
<td>96</td>
<td>78</td>
</tr>
<tr>
<td>Sex</td>
<td>55 F, 41 M</td>
<td>46 M, 32 F</td>
</tr>
<tr>
<td>Age, y (mean)</td>
<td>3–87 (41)</td>
<td>4–84 (49)</td>
</tr>
<tr>
<td>Results</td>
<td>2 IgG positive and 1 IgG and IgM positive</td>
<td>None positive in PCR or serology</td>
</tr>
</tbody>
</table>