Synopses

<u>A Mathematical Model and CD4+ Lymphocyte Dynamics in</u> <u>HIV Infection</u>

Appendix

The model considers immature and mature CD4+ (\bar{P} and \bar{P} cells) and CD8+ lymphocytes (\bar{R} and \bar{R} cells). As normal values of \bar{R} cells equal about two thirds of those of \bar{P} cells, it is assumed that normal \bar{R} values correspond in a similar way to 2/3 of \bar{P} cells. The sizes of these cell compartments at time t are described by Eqs. (1)(4). The amount of HIV products at time t is given by Eq. (5). Finally, Eq. (6) gives the number of cytotoxic T cells specific for HIV (C cells) at time t. In the model used, these cells both limit proliferation of HIV, as indicated in Eq. (5), and effect destruction of CD4+ cells presenting HIV products according to Eqs. (1)(2).

$$\frac{d\bar{P}(t)}{dt} = \frac{I_{\rm P} + f[(\bar{P}_0 - \bar{P}(t)) + (\bar{R}_0 - \bar{R}(t))]}{d(t)} - \bar{\mathfrak{p}}\bar{P}(t) - \bar{\mathfrak{c}}\mathfrak{p}\mathfrak{a}(t)C(t)\bar{P}(t), \qquad (1)$$

$$\frac{d\bar{P}(t)}{dt} = \frac{\bar{p}}{\bar{p}}\bar{P}(t) - \bar{\mathfrak{p}}P(t) - \bar{\mathfrak{c}}\mathfrak{p}\mathfrak{a}(t)C(t)\bar{P}(t), \quad P(0) = \bar{P}_0 \qquad (2)$$

$$\frac{d\bar{R}(t)}{dt} = \frac{2}{3} - \frac{I_{\rm P} + f[(\bar{P}_0 - \bar{P}(t)) + (\bar{R}_0 - \bar{R}(t))]}{d(t)} - \bar{\mathfrak{t}}\bar{R}\bar{R}(t), \quad \bar{R}(0) = \frac{2}{3}\bar{P}_0 \quad (3)$$

$$\frac{d\bar{R}(t)}{dt} = \bar{\mathfrak{c}}\bar{R}\bar{R}(t) - (\bar{\mathfrak{r}}\bar{R} - \bar{P}\bar{R})\bar{R}(t), \quad \bar{R}(0) = \frac{2}{3}\bar{P}_0 \quad (4)$$

$$\frac{da(t)}{dt} = a(t)[\theta - \zeta - \Psi C(t)], \quad a(0) = a_0 \quad (5)$$

where the influx-constraining function was

$$d(t) = \begin{cases} 1 & \text{if } \ln & \frac{a(t)}{-} & (7) \\ & & & & \\ & & & & \\ h \ln & \frac{a(t)}{-} & \text{if } \ln & - & \ge L \\ & & & & & a_{(0)} \end{cases}$$

Here I_P is the influx of \overline{P} cells, i.e., the rate (all rates are in days⁻¹) of differentiation of \overline{P} cells from stem cells, $\overline{\tau}_P$ is the rate of maturation of \overline{P} cells into Pcells, and $\overline{\tau}_P$ is the rate of natural death of Pcells; the quantities $\overline{\tau}_R$ and τ_R are defined in a fully analogical way. Further, f is the amplifying coefficient of the linear feedback effect of Pand/or Rcell decrease on the influx of \overline{P} and \overline{R} and \overline{R} cells at time t.

The quantity $\overline{c}_{Pa}(t)C(t)$ is the rate of elimination of \overline{P} cells due to the amount of HIV products a(t) and the number of cytotoxic T cells C(t) at time t. Analogously, $c_{Pa}(t)C(t)$ is the rate of elimination of \overline{P} cells. The value a_0 is the function of the infectious dose of HIV, θ characterizes the growth rate of HIV, and \forall is the rate of inactivation of HIV products mediated by cytotoxic C cells. The maturation of these cells from their precursors is assumed to be dependent on the encounter with HIV products and the effect of HIV specific helper T cells. I_C is the influx of C cell precursors, etheir maturation rate, α the proliferation rate of C cells under the antigenic stimulation by HIV products and helper T cell influence, and τ_C their natural death rate. Helper T cell effect on maturation and proliferation of C cells is expressed by the ratio $\overline{P}(t)/\overline{P}_0$; the coefficient v is introduced to characterize the intensity of this helper effect. The value h characterizes HIV-constraining intensity on the \overline{P} and \overline{R} cell influx. Value L defines the level, where such constraining (limiting) effect of d(t) starts. Effects of therapeutic interventions are described by the following parameters: ζ - HIV elimination rates of CD8+ and C cells, respectively, by anti-CD8 antibodies.

If not otherwise stated, the model parameters in simulation runs were selected as follows: $\bar{\tau}_P = 0.2$, $\tau_P = 0.01$, $\bar{\tau}_R = 0.2$, $\tau_R = 0.01$, $\tau_C = 0.01$, $I_P = 1.0$, $I_C = 0.2$, $\bar{P}_0 = 5.0$, $P_0 = 100.0$, $\bar{R}_0 = 3.33$, $R_0 = 66.7$, $C_0 = 0.0$, $a_0 = 0.0005$, f = 0.01, $\alpha = 0.7$, $\varepsilon = 0.512$, $\forall = 0.3$, $\theta = 0.02$, v = 1.6, h = 3.5, L = 3.0. Only mature CD4+ lymphocytes were assumed to be susceptible to HIV products, i.e. $\bar{c}_P = 0.0$,

 $_P = 20.0$. As a rule, the parameter *e* was used for final adjustment of the respective simulation run. If no therapeutic interventions are assumed ($\lambda = 1.0, \zeta = 0.0, P_R = 0.0, P_C = 0.0$), the resulting CD4+ standard curve characterizes best fit of the observed clinical data.