Synopses

A Mathematical Model and CD4+ Lymphocyte Dynamics in HIV Infection

Appendix

The model considers immature and mature CD4+ (\(\tilde{P} \) and \(P \) cells) and CD8+ lymphocytes (\(\tilde{R} \) and \(R \) cells). As normal values of \(R \) cells equal about two thirds of those of \(P \) cells, it is assumed that normal \(R \) values correspond in a similar way to 2/3 of \(P \) cells. The sizes of these cell compartments at time \(t \) are described by Eqs. (1)(4). The amount of HIV products at time \(t \) is given by Eq. (5). Finally, Eq. (6) gives the number of cytotoxic T cells specific for HIV (\(C \) cells) at time \(t \). In the model used, these cells both limit proliferation of HIV, as indicated in Eq. (5), and effect destruction of CD4+ cells presenting HIV products according to Eqs. (1)(2).

\[
\begin{align*}
\frac{d\tilde{P}(t)}{dt} &= \frac{I_P + f[(\tilde{P}_0 - \tilde{P}(t)) + (\tilde{R}_0 - \tilde{R}(t))] - \tilde{P} \tilde{P}(t) - \varepsilon \alpha(t)C(t)\tilde{P}(t),}{d(t)} \\
\tilde{P}(0) &= \tilde{P}_0
\end{align*}
\]

(1)

\[
\begin{align*}
\frac{dP(t)}{dt} &= \frac{\tilde{P}\tilde{P}(t) - \varepsilon \tilde{P}(t) - \varepsilon \alpha(t)C(t)\tilde{P}(t),}{d(t)} \\
P(0) &= P_0
\end{align*}
\]

(2)

\[
\begin{align*}
\frac{d\tilde{R}(t)}{dt} &= \frac{2}{3} \frac{I_P + f[(\tilde{P}_0 - \tilde{P}(t)) + (\tilde{R}_0 - \tilde{R}(t))] - \varepsilon \tilde{R}\tilde{R}(t),}{d(t)} \\
\tilde{R}(0) &= \frac{2}{3} \tilde{R}_0
\end{align*}
\]

(3)

\[
\begin{align*}
\frac{d\tilde{R}(t)}{dt} &= \frac{2}{3} \frac{I_P + f[(\tilde{P}_0 - \tilde{P}(t)) + (\tilde{R}_0 - \tilde{R}(t))] - \varepsilon \tilde{R}\tilde{R}(t),}{d(t)} \\
\tilde{R}(0) &= \frac{2}{3} \tilde{R}_0
\end{align*}
\]

(4)

\[
\begin{align*}
\frac{da(t)}{dt} &= a(t)[\theta - \zeta \gamma C(t)], \\
a(0) &= a_0
\end{align*}
\]

(5)

\[
\begin{align*}
\frac{dC(t)}{dt} &= \lambda a(t)[\sigma_c + \alpha C(t)] \left(\frac{P(t)}{P_0} \right)^\gamma - (\tau_c - P_c)C(t), \\
C(0) &= C_0
\end{align*}
\]

(6)

where the influx-constraining function was

\[
d(t) = \begin{cases}
1 & \text{if } \ln \frac{a(t)}{a(0)} < L \\
\frac{h \ln a(t)}{a_0} & \text{if } \ln \frac{a(t)}{a(0)} \geq L
\end{cases}
\]

(7)
Here I_P is the influx of P cells, i.e., the rate (all rates are in days$^{-1}$) of differentiation of P cells from stem cells, r_P is the rate of maturation of P cells into P cells, and r_P is the rate of natural death of P cells; the quantities r_R and r_R are defined in a fully analogical way. Further, f is the amplifying coefficient of the linear feedback effect of P and/or R cell decrease on the influx of P and R cells at time t.

The quantity $\xi_P a(t)C(t)$ is the rate of elimination of P cells due to the amount of HIV products $a(t)$ and the number of cytotoxic T cells $C(t)$ at time t. Analogously, $c_P a(t)C(t)$ is the rate of elimination of P cells. The value a_0 is the function of the infectious dose of HIV, b characterizes the growth rate of HIV, and γ is the rate of inactivation of HIV products mediated by cytotoxic C cells. The maturation of these cells from their precursors is assumed to be dependent on the encounter with HIV products and the effect of HIV specific helper T cells. I_C is the influx of C cell precursors, r_C their maturation rate, α the proliferation rate of C cells under the antigenic stimulation by HIV products and helper T cell influence, and r_C their natural death rate. Helper T cell effect on maturation and proliferation of C cells is expressed by the ratio $P(t)/P_0$; the coefficient v is introduced to characterize the intensity of this helper effect. The value h characterizes HIV-constraining intensity on the P and R cell influx. Value L defines the level, where such constraining (limiting) effect of $d(t)$ starts. Effects of therapeutic interventions are described by the following parameters: ζ-HIV elimination rate by AZT or passive immunization, λ-immune response-enhancing factor, and P_R and P_C-elimination rates of CD8+ and C cells, respectively, by anti-CD8 antibodies.

If not otherwise stated, the model parameters in simulation runs were selected as follows: $r_P = 0.2$, $\tau_P = 0.01$, $r_R = 0.01$, $\tau_C = 0.01$, $I_P = 1.0$, $I_C = 0.2$, $\xi_P = 5.0$, $P_0 = 100.0$, $R_0 = 3.33$, $\xi_C = 66.7$, $C_0 = 0.0$, $a_0 = 0.0005$, $f = 0.01$, $\alpha = 0.7$, $\varepsilon = 0.512$, $\gamma = 0.3$, $\beta = 0.02$, $v = 1.6$, $h = 3.5$, $L = 3.0$. Only mature CD4+ lymphocytes were assumed to be susceptible to HIV products, i.e. $\xi_P = 0.0$, $p = 20.0$. As a rule, the parameter e was used for final adjustment of the respective simulation run. If no therapeutic interventions are assumed ($\lambda = 1.0$, $\xi = 0.0$, $P_R = 0.0$, $P_C = 0.0$), the resulting CD4+ standard curve characterizes best fit of the observed clinical data.