Janaina Oliveira Luna, Sérgio Cabral Pinto, Fábio Fraga Schwingel, Concepta McManus, and Luiza Seixas

Author affiliations: University of Brasília, Brasília, Brazil (C.B. de Melo, A.R. Souza, C. McManus, L. Seixas); Ministry of Agriculture, Livestock and Food Supply (MAPA), Brasília, Brazil (M.E.P. de Sa); MAPA, Galeão Airport, Rio de Janeiro, Brazil (P.R. Campani); MAPA, Guarulhos Airport, São Paulo, Brazil (J.O. Luna); MAPA, Confins International Airport, Belo Horizonte/Confins, Brazil (S. Cabral Pinto); MAPA, Brasília International Airport (BSB), Brasília, Brazil (F.F. Schwingel); and MAPA, Pedro Leopoldo, Brazil (A.M. de Oliveira, P.M.P.C. Mota)

DOI: http://dx.doi.org/10.3201/eid2011.131422

References

7. Dias NL. Staphylococcus aureus identification, evaluation of the enterotoxigenic potential and methicillin resistance by the PCR technique in dulce de leche samples in the Sete-Lagoas microregion, in the State of Minas Gerais; Brazil (dissertation) [in Portuguese]. Belo Horizonte, Minas Gerais, Brazil: Federal University of Minas Gerais, 2010.

Address for correspondence: Cristiano Barros de Melo, Universidade de Brasília (UnB-FAV), Campus Darcy Ribeiro, ICC Sul, Asa Norte, Brasilia, DF 70910-900 Brazil; email: cristianomelo@unb.br

Evidence of Evolving Extraintestinal Enteroaggregative Escherichia coli ST38 Clone

To the Editor: Several clones of extended-spectrum β-lactamase (ESBL)–producing extraintestinal pathogenic Escherichia coli (ExPEC) have globally expanded their distribution, including multilocus sequence types (MLSTs) ST38, ST131, ST405, and ST648 (1). ExPEC infections often originate from the patient’s own intestinal flora, although the degree of overlap between diarrheagenic E. coli and ExPEC pathotypes is unclear. Relatively little is known about antimicrobial drug resistance in the most common diarrheagenic E. coli groups, including enteroaggregative E. coli (EAEC), and bacterial gastroenteritis is generally managed without use of antimicrobial drugs.

The ability of diarrheagenic E. coli to cause extraintestinal infections has been shown in previous studies: a study among children in Nigeria linked EAEC to uropathogenic clonal group A (2), and a study in Brazil showed that EAEC markers were present in 7.1% of the E. coli isolates from urinary tract infections (3). Neither of these studies identified clonal lineages of EAEC specifically associated with extraintestinal infections.

We conducted this study to establish the presence and characteristics of ESBL-producing EAEC in a well-defined collection of ESBL-producing isolates (4). The isolates were from human and animal sources in Germany, the Netherlands, and the United Kingdom. The study was conducted at Public Health England during January–April 2013.

DNA from 359 ESBL isolates (4) was screened for the presence of the EAEC transport regulator gene (aggR), located on the EAEC plasmid, by using a real-time PCR assay and the following primers and probe: AggR_FWD 5′-CCATTTATCGAATCCAGAT- TAA-3′ AggR_B 5′-CAAGCATC TACCTTTTAGATTCC-3′, AggR_PR C 5′-CAGCGATACATGAACGCCTAAAGGA-BHQ. The amplification parameters were 50°C for 2 min, 95°C for 2 min, and 40 cycles at 95°C for 10 s and at 60°C for 20 s. Isolates positive for aggR were confirmed to be E. coli by using the Omnilog Ge nIII MicroPlate (Biolog, Hayward, CA, USA). Serotyping was done by using standard methods (5).

The phylogroup was determined for each isolate, and isolates were then assigned to 1 of the 4 major E. coli groups: A, B1, B2, and D (6). A microarray was used to detect ESBL genes, such as blaCTX-M, at the group level, as previously described (4). The antimicrobial drug susceptibilities of EAEC isolates were determined by using the agar incorporation method, as described in the British Society for Antimicrobial Chemotherapy guidelines (7).

Virulence factors associated with intestinal and extraintestinal infection
Table. Characteristics of human-derived ESBL-producing enteroaggregative Escherichia coli isolates from sources in Germany, the Netherlands, and the United Kingdom*

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Serotype†</th>
<th>ST</th>
<th>Cplx‡</th>
<th>Country</th>
<th>Source</th>
<th>Phylotype</th>
<th>aggR§</th>
<th>Plasmidic ESBL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESBL-723</td>
<td>OR:H30</td>
<td>38</td>
<td>38</td>
<td>UK</td>
<td>Urine</td>
<td>D</td>
<td>+</td>
<td>CTX-M-15</td>
</tr>
<tr>
<td>ESBL-746</td>
<td>O125ac:H30</td>
<td>38</td>
<td>38</td>
<td>UK</td>
<td>Urine</td>
<td>D</td>
<td>+</td>
<td>CTX-M-15</td>
</tr>
<tr>
<td>ESBL-884</td>
<td>O19a:H30</td>
<td>38</td>
<td>38</td>
<td>UK</td>
<td>Urine</td>
<td>D</td>
<td>+</td>
<td>CTX-M-14</td>
</tr>
<tr>
<td>ESBL-831</td>
<td>O19a:H30</td>
<td>38</td>
<td>38</td>
<td>UK</td>
<td>Urine</td>
<td>D</td>
<td>+</td>
<td>CTX-M-14</td>
</tr>
<tr>
<td>ESBL-815</td>
<td>O19a:H30</td>
<td>38</td>
<td>38</td>
<td>UK</td>
<td>Blood</td>
<td>D</td>
<td>+</td>
<td>CTX-M-14</td>
</tr>
<tr>
<td>ESBL-26</td>
<td>O153:H30</td>
<td>38</td>
<td>38</td>
<td>Netherlands</td>
<td>Urine</td>
<td>D</td>
<td>+</td>
<td>CTX-M-51</td>
</tr>
<tr>
<td>ESBL-221</td>
<td>O92:H33</td>
<td>34</td>
<td>10</td>
<td>Germany</td>
<td>Feces</td>
<td>A</td>
<td>+</td>
<td>CTX-M-3</td>
</tr>
<tr>
<td>ESBL-45</td>
<td>O7:H26</td>
<td>58</td>
<td>155</td>
<td>Netherlands</td>
<td>Urine</td>
<td>B1</td>
<td>+/-</td>
<td>CTX-M-14</td>
</tr>
<tr>
<td>ESBL-46</td>
<td>O?:H-</td>
<td>694</td>
<td>None</td>
<td>Netherlands</td>
<td>Urine</td>
<td>A</td>
<td>+/-</td>
<td>CTX-M-15</td>
</tr>
<tr>
<td>ESBL-48</td>
<td>O15:H1</td>
<td>545</td>
<td>None</td>
<td>Netherlands</td>
<td>Urine</td>
<td>D</td>
<td>+/-</td>
<td>CTX-M-1</td>
</tr>
<tr>
<td>ESBL-64</td>
<td>O7:H23</td>
<td>224</td>
<td>None</td>
<td>Netherlands</td>
<td>Urine</td>
<td>B1</td>
<td>+/-</td>
<td>CTX-M-1</td>
</tr>
</tbody>
</table>

*All isolates were collected in 2009 (4). ESBL, extended-spectrum β-lactamase. ST, sequence type.
†H- not motile; O?, O unidentified; R, rough reaction.
‡Cplx-ST complex comprising single-locus variants.
§aggR, enteroaggregative E. coli regulatory gene; +, positive in screen and isolates; −, negative in screen and isolates; +/-, positive in screen but negative in isolates, indicating unstable plasmid.

(8) and with EAEC were investigated as previously described (9). We assigned a virulence score (total number of virulence factor genes detected; maximum possible score 22) and a resistance score (total number of drug classes; maximum score 11) to each isolate.

We isolated 11 EAEC from humans. Eight of the EAEC were isolated from urine specimens, and 1 was isolated from a blood culture; 63% belonged to intestinal sites in the subset of 140 human isolates (Fisher exact test, p<0.0001).

In this study, we identified multidrug-resistant EAEC isolates belonging to ST38; the isolates had various somatic antigens and blaCTX-M genes (Table). The multiple somatic antigens, variety of antimicrobial drug–resistance scores, and variety of gene complements in this successful ST indicate multiple acquisitions of virulence markers, rather than clonal expansion from a single source (Table; online Technical Appendix Figure, http://wwwnc.cdc.gov/EID/article/20/11/13-1845-Techapp1.pdf).

In the MLST public database, which contained 5,143 E. coli entries in June 2013, ST38 is predominantly associated with urinary tract infections, but in-house MLST studies at the Gastrointestinal Bacteria Reference Unit, Public Health England, have shown that ST38 is a successful EAEC group. The presence of EAEC virulence factors, such as aggregative adherence fimbria AAFI and aggR, can mediate adherence of E. coli to bladder epithelial cells, but the virulence factors do not impart uropathogenic properties to all EAEC isolates (10). The ST38 strain described here probably originated from the gut and independently acquired the 2 phenotypes (uropathogenic E. coli [UPEC] and EAEC), which would suggest the emergence of a UPEC/EAEC hybrid strain. It seems likely that an ST38 E. coli strain adapted to EAEC plasmid carriage (a change that would help survival in the gut through increased adherence) has acquired UPEC virulence factors, facilitating the exploitation of an extraintestinal niche, the urinary tract.

Despite the characterization of numerous virulence factors, no single genetic feature currently defines EAEC or UPEC isolates. Because the EAEC ST38 strain had 4–7 ExPEC-associated virulence factors, we suggest that, on the basis of epidemiologic, microbiological, and molecular characteristics, the EAEC ST38 described in this study should be considered an ExPEC associated with uropathogenic infections. It is possible that the multidrug-resistant EAEC ExPEC group has expanded globally but is currently underreported. We therefore urge testing for the EAEC genotype in all clinical studies of E. coli pathotypes.

Our findings show the potential for EAEC, previously considered a gut pathogen, to cause extraintestinal infection. We suggest that the UPEC/EAEC pathotype may be an evolving clonal group. In particular, a single sequence type, ST38, was associated with multidrug resistance and with urinary tract infection in humans.

Acknowledgments

We thank Dawn Hedges for serotyping the organisms, Andy Lawson for designing the aggR primers, Danielle Hall for help with PCR screening, and Danielle Meunier for her valuable insight.

This study was funded by the Public Health England Gastrointestinal Bacteria Reference Unit.

Marie Anne Chattaway, Claire Jenkins, Holly Ciesielczuk, Martin Day, Vivienne DoNascimento, Michaela Day, Irene Rodríguez, Alieda van Essen-Zandbergen, Anne-Kathrin Schink, Guanghui Wu, John Threlfall, Martin J. Woodward, Nick Coldham, Kristina Kadlec, Stefan Schwarz, Cindy Dierikx, Beatriz Guerra, Reiner Helmuth, Dik Mevius, Neil Woodford, and John Wain
Author affiliations: Public Health England, Colindale, London, UK (M.A. Chattaway, C. Jenkins, H. Ciesielczuk, Martin Day, V. DoNascimento, Michaela Day, J. Threlfall, N. Woodford, J. Wain); Hospital Universitario Ramón y Cajal, Madrid, Spain (I. Rodríguez); University of East Anglia, Norfolk, UK (J. Wain); Federal Institute for Risk Assessment, Berlin, Germany (I. Rodríguez, B. Guerra, R. Helmuth); Central Veterinary Institute of Wageningen, Lelystad, the Netherlands (A. van Essen-Zandbergen, C. Dierikx, D. Mevius); Friedreich-Loeffler-Institut, Neustadt-Mariensee, Germany (A.-K. Schink, K. Kadlec, S. Schwarz); and Animal Health and Veterinary Laboratories Agency, Weybridge, UK (G. Wu, M.J. Woodward, N. Coldham)

DOI: http://dx.doi.org/10.3201/eid2011.131845

References


2. Wallace-Gadsden F, Johnson JR, Wain J. Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 20, No. 11, November 2014 1937


Address for correspondence: Marie Anne Chattaway, Public Health England, Gastrointestinal Bacteria Reference Unit, Colindale, NW9 5EQ, UK; email: marie.chattaway@phe.gov.uk

Resolution Threshold of Current Molecular Epidemiology of Diphtheria

“The fox who longed for grapes, beholds with pain
The tempting clusters were too high to gain;
Grieved in his heart he forced a careless smile,
And cried, ‘They’re sharp and hardly worth my while.’”

(Aphra Behn, 1687, after Aesop’s The Fox and the Grapes)

To the Editor: Diphtheria is an extremely rare disease in Europe but remains a major health issue in developing countries (1–3). In recent years, steady progress has been made toward understanding the factors of pathogenicity of its causative agent (Corynebacterium diphtheriae). In contrast, remarkable advances in its basic genomics have not been sufficiently translated into the molecular epidemiology of diphtheria. A recent report by Zasada (4) offers an apt opportunity to take a new look at this issue.

The current genotyping repertoire of C. diphtheriae includes several methods but those most frequently used are classical ribotyping and pulsed-field gel electrophoresis (PFGE). More recently, a multilocus sequence typing (MLST) scheme for C. diphtheriae was developed (5). Compared with ribotyping, PFGE, and other methods based on analysis of banding profiles, MLST results are digital, unambiguous, and portable. MLST discrimination of 150 isolates from 18 countries and spanning 50 years was “in accordance with previous ribotyping data, and clonal complexes associated with disease outbreaks were clearly identified by MLST” (5).

In the report by Zasada (4), all 3 recommended methods (PFGE, MLST, and ribotyping) were used to genotype 25 nontoxigenic C. diphtheriae isolates from Poland. The author concluded that these isolates “represent a single clone despite isolation… in different part of the country over a 9-year period” and raised the question of whether a single clone of C. diphtheriae is circulating in Poland (4). These isolates are related genetically, but do they represent a truly single clone or might they be further discriminated? Their circulation in Poland may be caused by their high pathogenicity, but also (or instead) it might reflect their endemic, historical prevalence in this country. I believe that these questions are unlikely to be answered by the internationally agreed-upon methods for C. diphtheriae typing because of their insufficient resolution: the discriminatory power of MLST does not exceed that of ribotyping (5).