virus infections in Hangzhou (online Technical Appendix Figure). Prompt control of A(H7N9) infection outbreaks and vaccination against seasonal influenza viruses could reduce the potential for co-infections with A(H7N9) virus and seasonal viruses.

Taken together with the previous finding of human co-infection with A(H7N9) virus and A(H3N2) virus (1), our results show that human co-infection with A(H7N9) virus and each of the 3 seasonal influenza viruses currently circulating worldwide can occur. Avian influenza viruses, including A(H7N9), preferentially replicate in the lower respiratory tract of humans (8,9). In contrast, seasonal influenza viruses preferentially infect the upper respiratory tract of humans (10). Coexistence of A(H7N9) virus with either A(H1N1)pdm09 virus or influenza B virus in the pharyngeal swab samples from 2 patients suggests that the upper respiratory tract could provide a location for the A(H7N9) virus to reassort with other influenza viruses. The possibility that seasonal influenza viruses might provide some gene segments that increase the human-to-human transmissibility of possible new reassortants is cause for concern. For detection of such new influenza virus reassortants, extensive surveillance to identify influenza virus co-infections is necessary.

This work was supported by the Hangzhou Key Medicine Discipline Fund for Public Health Laboratory, sponsored by the Hangzhou government, and the S&T Innovation Group of Key Technology for Public Health Surveillance and Emergency Preparedness and Response, sponsored by the Zhejiang government (2011R50021).

Jun Li, Yu Kou, Xinfen Yu, Yongxiang Sun, Yinyan Zhou, Xiaoying Pu, Tao Jin, Jingcao Pan, and George F. Gao

Author affiliations: Hangzhou Center for Disease Control and Prevention, Hangzhou, China (J. Li, Y. Kou, X. Yu, Y. Zhou, X. Pu, J. Pan); Xiaoshan District Center for Disease Control and Prevention, Hangzhou (Y. Sun); BGI-Shenzhen, Shenzhen, China (T. Jin); and Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Beijing, China (G.F. Gao)

DOI: http://dx.doi.org/10.3201/eid2011.140897

References

Address for correspondence: Jingcao Pan, Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Room 221, Building 5, Mingshi Rd, Jianqiao Zhen, Jianggan District, Hangzhou, Zhejiang Province, China; email: jingcaopan@gmail.com
infection have been reported there (online Technical Appendix Table, http://wwwnc.cdc.gov/EID/article/20/11/14-0996-Techapp1.htm). Most recently, Pastor-Valle et al. confirmed, using molecular tools, an imported case of infestation by Diplogonoporus balae-noterae and 3 imported cases of diphyllobothriosis caused by D. pacifi-cum (5), a tapeworm endemic to the Pacific coast of South America (1,4).

Specific identification of most human-infecting Diphyllobothrium tapeworms based on clinical material is virtually impossible (1,3); the only exception is identifying the Pacific broad tapeworm, D. pacificum. This tape-worm can be easily distinguished from other human-infecting diphyllobothri-deans by the presence of pits alongside the median line on the ventral surface of its proglottids; smaller, more spheri-cal, eggs; and the almost equatorial position of the genital pore, a feature that is markedly pre-equatorial in other species (online Technical Appendix Figure 1, http://wwwnc.cdc.gov/EID/article/20/11/14-0996-Techapp1.htm).

Several hundred cases of infection by this species have been reported from Peru, and a few reports have been made from Ecuador, Chile, and Japan (1). The life cycle of D. pacificum is not completely known, but several species of marine fish have been identified as sources of human infection in Peru (4).

We critically examined all recent records of diphyllobothriosis in Spain to clarify species identification because published morphologic data indicated misdiagnosis (online Technical Appendix Table). Tapeworms detected in 2 recent human cases reported by Colomina et al. (6) and Esteban et al. (7), described as D. la-tum, resembled those of D. pacificum because of the morphology of pro-glottids and eggs (6,7). Therefore, we requested material of these cestodes for scrutiny. Morphologic and molecular evaluation (partial lsrDNA and cox1 gene sequences; multiplex PCR testing by Wicht et al. (8), (Figure, online Technical Appendix Figures 1, 2) actually confirmed that D. pacifi-cum was misidentified as D. latum in both cases, despite the molecular identi-fication through multiplex PCR.

No voucher specimens for re-identifi-cation were available for another 2 alleged cases of D. latum infection (online Technical Appendix Table). However, the eggs reported in the study by Gil-Setas et al. were more similar in shape and size to those of D. nihonkaiense or Diplogonoporus balae-noterae than to those of D. latum (9).

D. latum is the principal caus-ative agent of human diphylloboth-riosis; its fish intermediate hosts are perch, pike, burbot, and ruff in Eu-ope (1,4). Other fish, such as salmo-nids and marine fish, cannot transmit this parasite and serve as intermedi-ate hosts of other species of Diphyl-lobothrium and Diplogonoporus (4).

The information on the spectrum of fish intermediate hosts of D. pacificum is limited. From very scarce anamnes-tic data about individual case-patients infected with D. pacificum in Spain, it is not possible to unravel the actual source of their infection. However, it is obvious that the recent emergence of diphyllobothriosis caused by nonen-demic species such as D. pacificum, D. dendriticum (3), D. nihonkaiense (2), and D. balae-noterae (5) is related to the global importation of fish that have not been frozen. If the fish are merely chilled, plerocercoids of diphylloboth-riids may survive for several days (10).

Spain is the third largest importer of fish and seafood in the world; the value of fish products imported from >104 countries reached $7 billion (US) in 2011 and increases continuously. More than 200,000 tons of fresh or chilled fish, which may serve as source of human fishborne diseases if eaten raw or undercooked, are imported to Spain every year. The fourth largest importer is Ecuador, the sixth is Chile, and the seventh is Peru; D. pacificum is endemic to each of these countries (4).

In the present study, we confirmed human infections with the Pacific broad tapeworm, D. pacificum, in Eu-rope, but it is highly probable that this species can be introduced anywhere through the importation of fresh or chilled fish from the Pacific coast of South America. This has implications
for food safety rules and human health risk measures taken by national health and veterinary agencies. Regarding adequate processing of clinical samples and their preservation for morphologic and genetic evaluation, we strongly recommend fixation of positive fecal samples with eggs or segments (proglottids) immediately with 96%–99% molecular grade (i.e., not denatured) ethanol for future molecular diagnosis (1,4,8).

This work was supported by the Czech Science Foundation (grant number P506/12/1632) and the Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic (grant number RVO: 60077344).

Roman Kuchta,
José-Guillermo Esteban,
Jan Brabec, and Tomáš Scholz

Author affiliations: Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic (R. Kuchta, J. Brabec, T. Scholz); and Facultad de Farmacia, Universidad de Valencia, Valencia, Spain (J.-G. Esteban)

DOI: http://dx.doi.org/10.3201/eid2011.140996

References

Drug Resistance in Salmonella enterica ser. Typhimurium Bloodstream Infection, Malawi

To the Editor: Salmonella enterica serotype Typhimurium is one of the most common causes of bloodstream infection in sub-Saharan Africa (1). Among adults, the principal risk factor for invasive nontyphoidal Salmonella (iNTS) disease is advanced HIV infection; up to 44% of HIV-infected patients experience bacteremic recurrence through recrudescence of the original infection (2,3). Epidemics of iNTS disease in sub-Saharan Africa have been associated with a novel genotype of S. enterica ser. Typhimurium of multilocus sequence type (ST) 313 that is rarely seen outside the region and is associated with multidrug resistance (MDR) to chloramphenicol, cotrimoxazole, and ampicillin (4,5). As a consequence, ceftriaxone has become a key agent in the empirical management of nonfocal sepsis in Malawi (6).

In March 2009, a 40-year-old HIV-infected and antiretroviral therapy–naïve woman sought care in Blantyre, Malawi, with an MDR S. enterica ser. Typhimurium bloodstream infection. She was treated with ceftriaxone (2 g intravenously once daily) and discharged with oral ciprofloxacin (500 mg twice daily) for 10 days. She was readmitted 1 month later with recurrent fever. At this time, she had an MDR S. enterica ser. Typhimurium bloodstream infection with additional resistance to ceftriaxone and ciprofloxacin. In the absence of a locally available effective antimicrobial drug, she was treated with ceftriaxone, gentamicin, and high-dose ciprofloxacin but died shortly thereafter.

To help clarify how this extended MDR S. enterica ser. Typhimurium emerged, we determined the molecular mechanisms underpinning this disturbing pattern of antimicrobial resistance
Misidentification of Diphyllobothrium Species Related to Global Fish Trade, Europe

Technical Appendix

Technical Appendix Table. Survey of cases of Diphyllobothrium diphyllobothriosis and diplogonoporiasis infections, Spain, 1983–2014*

<table>
<thead>
<tr>
<th>Tapeworm species, subspecies</th>
<th>No. cases</th>
<th>Study</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. latum†</td>
<td>1</td>
<td>Zerolo et al. 1983 (1)</td>
<td>No data or material available‡</td>
</tr>
<tr>
<td>Diplogonoporus balanopterae</td>
<td>1</td>
<td>Clavel et al. 1997 (2)</td>
<td>Indicated by proglottid morphology</td>
</tr>
<tr>
<td>D. nihonkaiense or Diplogonoporus balanopterae†</td>
<td>1</td>
<td>Gil-Setas et al. 2004 (3)</td>
<td>Indicated by egg morphology; no material available</td>
</tr>
<tr>
<td>D. pacificum</td>
<td>1</td>
<td>Colomina et al. 2002 (4)</td>
<td>Re-identified as 'D. latum' by morphology</td>
</tr>
<tr>
<td>D. pacificum</td>
<td>1</td>
<td>Esteban et al. 2013 (5)</td>
<td>Re-identified as 'D. latum' by DNA</td>
</tr>
<tr>
<td>Diplogonoporus balanopterae</td>
<td>3</td>
<td>Pastor-Valle et al. 2014 (6)</td>
<td>DNA identification‡</td>
</tr>
</tbody>
</table>

* D. = Diphyllobothrium.
† Confirmation of identity not possible.
‡ No morphological data provided.

References

Technical Appendix Figure 1. Photomicrographs of segments of diphyllobothriids from human. A) *Diphyllolothrium pacificum* reported by Esteban et al. (2013); B) *D. latum* (experimental human infection); C) *D. nihonkaiense* (case from Japan). gp, genital pore; pits, longitudinal pits anterior to the genital atrium typical of *D. pacificum*.
Technical Appendix Figure 2. Differential diagnosis of human-infecting *Diphyllolothrium* spp. by multiplex PCR after Wicht et al. 2010. Lane M, GeneRuler 1kb Plus Ladder (ThermoScientific); lane 1, *D. dendriticum* positive control (318 bp); lane 2, *D. nihonkaiense* positive control (1232 bp); lane 3, *D. pacificum* positive control (727 bp); lane 4, *D. latum* positive control (437 bp); lane 5; Esteban et al. (2013) amlicon.