

Address for correspondence: Guangyou Yang, Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, 46 Xinkang Rd, Ya’an, Sichuan, 625014, People’s Republic of China; email: guangyouyang@hotmail.com

Novel Divergent Rhabdovirus in Feces of Red Fox, Spain

To the Editor: Rhabdoviruses (family Rhabdoviridae) are enveloped single-stranded negative-sense RNA viruses belonging to the Mononegavirales order. The International Committee on Taxonomy of Viruses recognizes 11 genera (Cytorhabdovirus, Ephememerovirus, Lyssavirus, Novirhabdovirus, Nucleorhabdovirus, Perhabdovirus, Sigmavirus, Spirivivirus, Tibrivirivirus, Tupavirivirus, Vesiculovirus) (1). In addition, many recently described rhabdoviruses remain unassigned. Rhabdoviruses contain 5 major genes, encoding for nucleoprotein (N), phosphoprotein (P), matrix (M), glycoprotein (G), and RNA-dependent RNA polymerase (L). The Rhabdoviridae family includes pathogens of various animal species, humans, and plants. Viruses of the genus Lyssavirus are the most relevant to public health because they can cause rabies. Bats are the driving force within this genus; foxes and various other species of wild carnivores also can be infected with lyssaviruses and transmit them to humans and dogs (2).

During a viral metagenomic survey, conducted as described previously (3), of fecal samples collected from 4 red foxes (Vulpes vulpes) that were found dead in Álava, Basque Country, Spain, we identified the complete coding sequence and the partial leader and trailer sequence of a novel rhabdovirus, tentatively called red fox fecal rhabdovirus (RFFRV; 15,541 nt, GenBank accession no. KF823814; online Technical Appendix, http://wwwnc.cdc.gov/EID/article/20/12/14-0236-Techapp1.pdf) by mapping 8,287 of the 56,519 sequence reads in the sample of a red fox. A proportion of obtained reads contained sequences that were ≥99% identical to mitochondrial DNA of V. vulpes, which confirmed that the sample was collected from a red fox.

The obtained sequence of RFFRV was partially confirmed by specific primers and Sanger sequencing of PCR amplicons. Five major and 3 minor open reading frames (ORFs) were identified that had a genome organization similar to that of other rhabdoviruses (Figure, panel A). No significant hits were obtained by BLAST analysis (http://blast.ncbi.nlm.gov/Blast.cgi) of N, P, M, and G nucleotide and amino acid sequences, which was reported previously for novel divergent rhabdoviruses (4).

Predicted N, P, and M genes of RFFRV consist of 1,629, 2,490, and 813 nt, respectively, encoding for 543, 830, and 271 aa (online Technical Appendix Table 1). In addition to the presence of significant hits observed by BLAST analysis, no significant sequence homology was observed with known rhabdovirus proteins in pairwise alignments. Furthermore, no conserved motifs were detected in N, P, and M genes of RFFRV that are commonly observed in rhabdoviruses. However, intergenic regions between all major ORFs contained relatively conserved motifs that could be transcription termination/polyadenylation sequences (A/U) CU$_3$, similar to other rhabdoviruses (5). Adjacent to this termination signal was a stretch of conserved nucleotides that might function as a transcription initiation signal (online Technical Appendix Table 1).

The amino acid sequence of the G protein consisted of 669 aa and contained an N terminal signal peptide (1-MYHLIVLVMGLQRA-VA-17), a noncytoplasmic domain (aa 18–646), a transmembrane domain (647-ITAILMPLLSLA VVVGI-1720), and a cytoplasmic tail of 2 aa, similar to other rhabdovirus G proteins as predicted by using Phobius and TMHMM (http://www.cbs.dtu.dk/services/TMHMM) (6,7). We predicted 3 potential glycosylation sites in the ectodomain at positions 38–40.
Between the G and L genes, a complex intergenic region was present that contained 3 ORFs of 246 nt (7,413–7,658 aa), 231 nt (7,716–7,946 aa), and 459 nt (7,893–8,355 aa), of which 2 were overlapping frames (U1–3). Additional ORFs between G and L genes were detected previously in other rhabdoviruses (8,9).

We detected transmembrane domains in the amino acid sequences of all 3 additional ORFs, suggesting they might act as viroporin (8,9).

The L gene of RFFRV contained 6,591 nt (2,197 aa). We detected several conserved domains and motifs, including RNA-dependent RNA polymerase, mRNA-capping region, mRNA capping enzyme, and virus-capping methyltransferase. Alignment of the deduced amino acid sequence of the L gene with the L gene of various other viruses belonging to the Mononegavirales order by using MAFFT version 7 (http://mafft.cbrc.jp/alignment/software/) and subsequent phylogenetic reconstruction by using a maximum-likelihood tree (WAG+F+I+G model with 100 bootstrap replicates in MEGA5 [http://www.megasoftware.net]) suggested that this virus belongs to a novel genus of the Rhabdoviridae family. In addition, pairwise identities of the deduced amino acid sequence of the L gene of RFFRV with that of other rhabdoviruses of the Rhabdoviridae family were only ≤35% (online Technical Appendix Table 2).

Because the fox was found dead and no tissue samples were collected, whether RFFRV played a role in the animal’s death is unknown. In addition, multiple attempts to isolate this virus on various cell lines of eukaryotes (Vero E6, MDCK, CRFK, N2a, and BHK cells, primary fox kidney cells) failed because of the absence of cytopathic effects and viral replication by quantitative reverse transcription PCR, despite a high number of reads in the original sample. The fox might have acquired the virus through spillover from a small prey, such as a bat, and additional studies are required to elucidate the prevalence, original host, and pathogenic potential of this novel virus.

Acknowledgments

We thank all researchers and institutions for their invaluable help during sampling and for providing the specimens used in this study, especially Patricia Lizarraga, Laura Elorza, Ricardo Gutierrez, and Luis Javier Chueca.

This work was funded by the European Community’s Seventh Framework Program (FP7/2007–2013) under the project “European Management Platform for Emerging and Re-emerging Infectious Disease Entities” European Community grant agreement no. 223498; the Virgo Consortium; and the Niedersachsen-Research Network on Neuroinfectiology of the Ministry of Science and Culture of Lower Saxony, Germany. In addition, this research was funded partially by the Basque Government through the research group on “Systematics, Biogeography and Population Dynamics” (ref. IT317-10; GIC10/76).

A.R.-G. holds a postdoctoral fellowship awarded by the Department of Education, Universities and Research of the Basque Government (ref. DKR-2012-64) and was awarded a short-visit research grant from the ConGenOmics Research networking program of the European Science Foundation to visit the Department of Viroscience, Erasmus Medical Centre and develop the current research project.
LETTERS

Rogier Bodewes,¹
Aritz Ruiz-Gonzalez,¹
Anita C. Schürch,
Albert D.M.E. Osterhaus,
and Saskia L. Smits

Author affiliations: Erasmus Medical Centre, Rotterdam, the Netherlands (R. Bodewes, A.C. Schürch, A.D.M.E. Osterhaus, S.L. Smits); University of the Basque Country, Vitoria-Gasteiz, Spain (A. Ruiz-Gonzalez); National Institute for Environmental Protection and Research, Ozzano dell’Emilia, Italy (A. Ruiz-Gonzalez); and Viroclinics Biosciences, Rotterdam (A.D.M.E. Osterhaus, S.L. Smits)

DOI: http://dx.doi.org/10.3201/eid2012.140236

References

DOI: http://dx.doi.org/10.1016/j.virol.2008.03.004

In 2010, during an ongoing RVFV outbreak in Mauritania, we collected 163 serum samples (62 from camels, 8 from cattle, and 93 from small ruminants) (5). RVFV RNA was isolated from serum samples as described previously (5). Further molecular testing of the samples was conducted by a SYBRGreen-based real-time reverse transcription PCR (RT-PCR) adapted from a conventional RT-PCR and based on generic primers (bun_group_forw 5′-CTGCTAA-CACCAGCAGTACTTTTGAC-3′ and bun_group_rev 5′-TGAGGGTTA-AGACCATCGTCAGGAACG-3′) that target a 250-nt sequence of the S segment of Banyamwera serogroup members (6). Real-time RT-PCR was performed in a CFX 96 real-time PCR system (Bio-Rad, Hercules, CA, USA) by using 5 μL RNA with a Quantitect SYBR Green RT-PCR Kit (QIAGEN, Hilden Germany) in a final volume of 25 μL. Cycling conditions included RT at 50°C for 30 min and 95°C for 15 min, followed by amplification with 44 cycles of 95°C for 15 s, 55°C for 25 s, 72°C for 30 s, and 77°C for 5 s. A melting curve analysis was then performed starting with 95°C for 60 s, and a temperature gradient was conducted from 68°C to 94°C in increments of 0.2°C.

Of the 163 serum samples tested, 2 samples from goats resulted in a positive signal with cycle thresholds of 23 (sample 51) and 28 (sample 65), respectively. Both samples showed similar melting peaks at ≈78.2°C and shared the identical partial nucleotide sequence of the S segment. The sequence belongs to the Banyamwera serogroup, but the short partial sequence was not sufficient for accurate virus determination and identification. For this reason, both serum samples were used to inoculate cell monolayers of Vero E6 cells that were assayed for virus replication. Only sample 51 displayed a cytopathic effect after 72 h and was further analyzed. We isolated the viral RNA from cell culture with TRIzol reagent.
Novel Divergent Rhabdovirus in Feces of Red Fox, Spain

Technical Appendix

Technical Appendix Table 1. Characteristics of RFFRV genes and intergenic sequences*

<table>
<thead>
<tr>
<th>Gene</th>
<th>Length, nt</th>
<th>Length, aa</th>
<th>Conserved intergenic sequence between 2 ORFs†</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1,629</td>
<td>542</td>
<td>UAG-60nt-ACAAAAAACCUACUCACGUAUAG</td>
</tr>
<tr>
<td>P</td>
<td>2,490</td>
<td>829</td>
<td>UAA-75nt-UCAAAAAACUAACACACGUGGAAUAG</td>
</tr>
<tr>
<td>M</td>
<td>813</td>
<td>270</td>
<td>UAA-23nt-ACAAAAAACCUACUCACUGGUAUAG</td>
</tr>
<tr>
<td>G</td>
<td>2,010</td>
<td>669</td>
<td>UAA-70nt-ACAAAAAACCUACACAGCAUUG</td>
</tr>
<tr>
<td>U1</td>
<td>246</td>
<td>81</td>
<td>UAA-25nt-ACAAAAAACCUACACACUGGGUGUAUAG</td>
</tr>
<tr>
<td>U2</td>
<td>231</td>
<td>76</td>
<td>NA</td>
</tr>
<tr>
<td>U3</td>
<td>459</td>
<td>152</td>
<td>UAA-116nt-ACAAAAAACCUACACACUGUGUAUACAAACAG</td>
</tr>
<tr>
<td>L</td>
<td>6,591</td>
<td>2,196</td>
<td>NA</td>
</tr>
</tbody>
</table>

*NA, not applicable; ORF, open reading frame; RFFRV, red fox fecal rhabdovirus.
†Start and stopcodon of the flanking genes are underlined.

Technical Appendix Table 2. Pairwise amino acid identities between the L protein of RFFRV and other rhabdoviruses

<table>
<thead>
<tr>
<th></th>
<th>RFFRV</th>
<th>LNYV</th>
<th>BEFV</th>
<th>RABV</th>
<th>IHNV</th>
<th>RYSV</th>
<th>PRV</th>
<th>SIGMAV</th>
<th>VSIV</th>
<th>TBIV</th>
<th>BASV</th>
<th>FARV</th>
<th>LBV</th>
<th>SHIBV</th>
<th>OZEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFFRV</td>
<td>100</td>
<td>97</td>
<td>93</td>
<td>91</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>89</td>
<td>90</td>
<td>90</td>
<td>88</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>LNYV NC_007642</td>
<td>27</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>23</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>21</td>
<td>22</td>
<td>22</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>BEFV NC_002526</td>
<td>31</td>
<td>30</td>
<td>25</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>21</td>
<td>22</td>
<td>22</td>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>RABV SRV9 AAT48626</td>
<td>34</td>
<td>30</td>
<td>45</td>
<td>44</td>
<td>43</td>
<td>43</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>40</td>
<td>42</td>
<td>42</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>PRV HM566195</td>
<td>33</td>
<td>25</td>
<td>60</td>
<td>59</td>
</tr>
<tr>
<td>SIGMAV Q410979</td>
<td>30</td>
<td>25</td>
<td>57</td>
</tr>
<tr>
<td>VSIV AAA48441</td>
<td>32</td>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td>TIBV GQ294472</td>
<td>31</td>
<td>25</td>
<td>57</td>
</tr>
<tr>
<td>BASV JX297815</td>
<td>30</td>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td>LBV JX901139</td>
<td>35</td>
<td>30</td>
<td>46</td>
</tr>
<tr>
<td>SHIBV ADD84511</td>
<td>35</td>
<td>30</td>
<td>46</td>
</tr>
<tr>
<td>OZEV FJ905105</td>
<td>35</td>
<td>30</td>
<td>45</td>
</tr>
</tbody>
</table>

Red Fox Fecal Rhabdovirus, Partial Genome (GenBank Accession No. KF823814)*

GGATATCAAGTCCACCAATACCTTATATGTGCATGATCATGCACATCATACATTCTACG
CATACGACTCCAGGGAGTACACTAARAAAAAAAGACGTAACACAGACTTTGAATTACGT
CAAGTCTAAGTTTTAAATTCGGTTAATTTCAATGGAATCAGTAACACGAAAAAGCCTAAT
CTCGTACACTTCAATAGCGGAGCGTCTCCTGATAATTTGCATTGGGAGCACCATTTA
CATTCAAAGGTGAGCCCATCATTCTATTTTGGAATAATTCCGCTGCAACAGGAATTACCG
GAAAGGGGGCCACAGAAAGACTGGACCAAAAGACATGATCCTGGAGTGAAGTAGT
TTCTCTGCCCAAGACTGATGCTAATCTGCTCAATCTCATAGCCGGGAACCGAAGCC
CCTGACGTGGAGAAACTACACCATCAAGAGTCCGGAAAAGGAGGATCCTATTGAAGAA
ATTGAAAGCAAGGTGGAGGTTCGCAATTTGGGACAACCTGCTGGTTCGAATGCAAAA

Page 1 of 13
GCAACACAGGGAAACATCCCCAAAGGGAGATTCCCCATACTACTCTGTCTTATTTTCTGGA
TAACCTGCAATTAAGGGAGCCCGCTGTCTGGCCCTTGGCCATGAAAGACCTCGGGGAC
CTGTTTATGTGAAAGCCTCAGTGCACCTCACCACCTCACAGGAGACATAGAATGGC
ATGGGTGATATTAAGTTGTGACGACGAGGCCTCCTCAGTATGATGGAGCATGGATGCTG
ATCATGCGCTAGTTCACTATCAAGGCTGAATCAAGAAAGATGAAATTGCAAGCCAG
CAGCAAGGCATTGGACACTCTTTGAGCGGTGTGCTACCTGAGATCACCAGCCAAAGGT
GTTGGGTATCTGTGTTGACGACGCTCAGATTGCGATATCAGCAGGTGGCTGCGG
GAGGTGCTACCTTGCTCAGAAATAGAGCAATAGAGGAGGAAATATAGAGTATG
ACCTAAAGGCTGACAGAAGAGGTGCAAAGCCGGGAACATTCTCGGAGGTTGAAC
TTAAAGAGTGCTGACAGATGCTAACACTCAGAATCGAATACGAGGTGTTACGA
CAAACACATCGGAGATGAGTAAAGAAGAGGCCTTTTGTATACAGATGACGCCCTTGGA
GACGACCGTCTTTACTTACTGCCCCAAAATAATAGAAGACGCTGTTGGAGCGGGAAG
CACTCCATGTGACGTATTTTGGGCTATCTCCTACGAGCTGTCCAGCTCAGTACACATTG
ACAGGGGCTCCATCCCCACCAAGGAGGTGAAATAGAAGGAGCTGATTGTTACGA
CAGTGTACAGATCATGCTGTTGCAATTTGTAGGAGTGAGGGAAATGACAGGCTCAAC
CAAACACGTCACCTGTGATAATGGAGGAAAGTTATATCCTCAAGGGGAGTTG
ACCCTAAGCGAGTGAATGACTTTGGTAAGATGTTACACTCAGAGACAGACACCCTTTGT
ATGAAGTACACCACCCACATCAGAGGAGGAGGCAGTACCCCTCTGTCTGAGGCTGTC
CASTAGTAGTAGAaGAGATGAAAGAGGATGCTGGGAAAGGAGCAGGAAGAAGA
GGTGGCTGAAAGAATCTCACATGAAAGGGCGAAGAGGAGCCATGACGAAAGATACAAATTAG
GGGGATTTTTATTCAGCGACATGACATCATCTTGAAATATTATAAGGTTGCTTTTGA
TTCTTCTAGCTTAGTTAGATTAGCCACCAAAAAAATAACCTCAGCTATGGCTAATCG
TGTAAGGAAAATTTGAGTGGTGTCCGGAATGATCCCGGGAAGCTGGGAAGAT
TGCTCTTTAATTGGCGTAATGCGGAGCTTATCTGCTGCTGCTCGG
AATTACGAAAGTCAATGGGTTGCCACATGCTGTTGCTGTAAGGAAAGTAAACTCGA
CTGCGACGCGGTTCGGAGAATGCTGGGCCCCTCCTTGCATTAGCAGTGAAGAGGCC
TGAGACCGAAATGGGTTGCCCACATGCTGTTGCTGTAAGGAAAGTAAACTCGA
GCTGCGACGCGGCTGAGAATGCGGAACCTAGAATCGGATGATTTGCAGCGGT
TAACAAATACCAGCATTGCCCCTGTCTCAAGGAAATATTCTCAAGGAAACACGACATC
AACATTTGACATTAAGAAACTACAAGAGCATCTCAGCTTTTGACAGCTAATTGGGCAA
TGAAGGATAAAAGCAGAGATGCCCAAGGTCCATGGGAATATATCTCACAAGGGCTAGGA
GAAGCATATGGAAATGCCTTCTGGGAGGCGCTGCAAGTTGCTACTGCTGGCAGAGA
AGGGATTTGACAGTGGACAGGTTGCTGACTAGTCTGTGAAGGCTAAGCATACACTGCGAGAG
GGAAAGTGGTGACGAATTGGCTCAATCGAATGTCAACATTATCCATGAGGGCGAG
GAAGACGCAAAATGAGGCCTTGGGTTTATCCTACATATCCTGAGCAAAAGAACATAGTTAGA
GGAAACACTGCGCGAGCCAGCGCTAAGAAAGTTGTTCTGTCTATTAACCTAFACTGGAG
GTCTCTGAGCCTCTCTTTGATTTCGCGGAAGTGGCCACAGCTCATATCAGACATTCTGGAC
GGAATGGAAATGTCTGCAATGAGAAAGCTGGTCTTGCAAATGATGATCTTGTCAACT
AGACACATGGGAGGTGTTCCTGTGATGCTGGTTTACCAAGATATCTTCAGATATTTT
AGCACCTCATGTTTCCCCTGCTAGGAGGAAGGCTAGCTGATGCTGAGGAT
TTCTGTTCGACCAGCTCTGGATGACAAGCAGATCAGTCTCTGGGATCAAGGCTAT
GAAGACGCGATAGGGCTTCAATCGAATACCCGCCCTTGTGGTTTCACTTGTCTT
ACACCAACCGCGCTCAAGCCAGACTCACCACCCCCGGAATCTGCTGAGAGCGTA
GGGAAGTTCTTGATCTCAGTCTGAGAAATATCTCTGAGCTCACTCAGCAG
AACATCGTGCTATTGCTGAGGGAGAATGATGGCTCCTAAGAGGCAATTAGCGAAGTATTA
CCGCTTGAGCTTTGGATTTTACAAACAACAACCTAAACATAGGTTATATAATGAATCA
TCTAATTGGCTCTTTTCTGTTATGCTAGGACAAAGAGCAGTAGCAGAGCCAGCTGACAT
TGCAGAGCCGCCAAGATCATACAGTATGCAGAGGAAAGGCTGAGAAATAAGACG
GGTCTGAGGATTGAGCTGTCTGAGATCCGGCTCAAAGCGCAGCATCAGCGG
TGATGTGCGCTCGACTAAGCGAGCCTGCTACCAAGGCGCTGACTACGACGCTGCGG
AACTTCAGCCCAGATTAAGGTGGGTGTGCTGAGTCTGAATACCCTGCCTAGGTTGTG
GGAGCCTTGGTACCCTTGCTGAGGAGCAAGGTCTCCAAGGAGCACCTAGCGATGTAG
TGCACTGAATCTCGAGAAGAGGCAATGGCCAGCGCATAGAATGCTTCGAGGAACA
CCCAATGGGAGATGATCAGTACTCCGTTTATACAAAATTCCGAGTCCCGAGTCTCCCTGCA
CCAAGCCGACTGGTAGTCTTACTGAAATCGAAGTGAAGGCAAGGGCGCAACTGATT
ATATCGAGTCTCGAGGCTAAGGTCAGCAGCTCTACGCCCCACCGGGTTGATGCTATAGGCA
AGTTATGTCTGATTCTCACCTGTAATGTCGAAAGAGAGATGAGTGCACGGGAGTACT
GGGTAAGCTGTCTGACACGTCCTCGGTACGCTCAATGTGTTGGACCCCGGGGTATGT
ACTGACAATAGTACGCTGATTTTGGTATATTGTGCTATAGTTGTCTGACGATAGGGTC
GACTAGCTTTCTCAACGTGAAAGAGAGCTGAGAAGACCGGCTGAGGATGAGGAAAG
ACCCTAAAGAATGTGAGTCTCTAGCAGAAGCAATTTTTCGACGAGAAGGTGAAGTCG
CTGTAAGAGGGAGGAGTTCTGATTATTGTGTATTAGGATGTTACTAGGTGAAAGTT
AGGGAGATGTGTACCAAGTCTCTTTAGGAAACAGCTAAATTTCATAGGGTTCTTGAACC
AAATGAAAGAGCCCCCTTTATTGTGGAGCGACCCCTTGCACACCCATCGCGCCCGCATG
GATCAGGGGATAGTGCTCTCTTACGCAAAAAATAGAAGAGGATAAACCTCGAGTTAACC
ACCATGAATGGGGGAATTGACGAGCGGAACTCAGCACAAGTTATCA
GGTGCAACCTCGCACGGAGTCACAAACTGCTCTTTGGAGCGGTTCGTTTCTACAG
TGAGGCTTATGTTATTATCAGCTAATAGAGCGCCGCTAGCCTTAGGCTAGCGTACTG
CAGCTACAATTTGGTGATAGTGCAAGGCTCTCGATCTGACAGAATGGGGAAGG
CGTATATGGCCTTTTTGTCACGCAATTTTGCCTATGGGCTACGGTACATG
GCAGGACCTGCTCCACTGCGAGACTAGAAAAGAAGTCTGCTCTTAATGCACTGGCAA
CTAAAGAGGCTCCCTCATCATAACGCTGTTTGAAGGCTGGTTACAAAGGATCGGAGT
CATACGGTCTGGGCTCAAGGGAAGGGCTCCTGTGTCAGCAGCAGGCTGTTCAGTG
AGTACACAGATCCTTGCAGCTAGAAAGGAAATATGGGATGGGCTTAAATAATGGG
AGAGAAGTTGGTTGCTGGATAGGGGATAGTTAAACTTTTGTGTCAAGAGCGGTTGCGT
GGTTAATCCGAACGACATCCGCTCTCTATCTTCTACTAGGGCAGTGGAAGGTAATATCTGA
TAGGGACGGCAGAAACTCTGAGCAAGCCACACCCAAAAGGGAGTTGGGGGAGCAT
CAGCTCTGAAAACATATCTGCGATGCTGGGATTACCTTAGCCAGTTTAGGAACAGAC
CGCCTCTGTGGGGATAGGTATGAGGGAACGCGCCATTACATTCTACTACGAACACTCAACAG
GAGACCCGGTATCATTCCCAGGGCATCATCATGCTCTAGGCTCTATAGCCAGCCA
GTAAATCAGACTGCTATTTTGTATGCTGTCTTCTTTATCCTTTACGATAGTGATGGGAAATAT
AATGTCTGAGCGAGAAACTGTGACATGACTAAGGAAAGGATATTGTTACCTCTCT
CTCTGATAGCTTTTAGGTTATACAAATAAAAAAACAACAAACAAGCTATGA
GGAGGCTTAAACTCAAGATTTTGAGGAAAGGAGATACGGAGGCGGCTGGTCTCAATAGCATA
AGCCAGAATCACAAGTGAAACACTTATAATTACGAGAGTTAGTTATAGGTCGCGC
GCCTCAGCCAAAGCAGCATTGATCAAATGTACCGAATGGGTGACATCATCTCCTCGCCAC
AGAAGGAAACGAAGGGTACAATGCAATCAAGACAATAGAAAGCATCATGGTCGGTT
CTGCACAATAAGAATGAGAGGACTCAATTTCTGCTGACATTGACAGATGAGT
GCAGGATGCTACAGACACTGGGCGACCACACATCATCAATCTGGTGGAGGTCTCACT
GCAGTCCGAGAGAAGCGAAGGCTGCCCAAGTCTCGACATAAGCAACTAGAAGAGCATCTGGCACAG
GCTGACATAACTATATTTTTTTTCTTACATGAGTATAGTTATTTTAAGAGAAGCATGGACAG
GTGGCCCGGGAGGTGAGTATGAAGCCGGGCCACAGATAGCCCAGAGACTGACAACCTGTTCA
ACAAGGTGCTTTTCTGACACATATGAGCGCTTATTCGACAAAAATCAAGAAATCCAA
TCCTCAGCTAATTTACGACAAGTCTCAGTCTGCTGACTTCCGACTGCCGCCCCTGCTCAACT
TGTGCCTCAAAAAAGAATCCTGCTGCTGACTTCCGACCGAAGGTTGCTTTCAACTCAACTC
TCAGATGCAAAGAGTCGATGGAACAAAATTTTTTGGACGTCTATAGACAGCAACAGA
AATGTGTTAAAGCAACAGACGACTTAGTGTACATCTATTTCCGCGAGAAAAGAGCGAGAGCTC
AAGGTAAAGGGCCTTTCTTTTTCCTAATGAGGACGTACAAATTTGAGGACTTACTTTACAA
GCAACCGAATACCTAAATTGCACAGACATTCTGCTGACTTCCGACAAAAATACAAATG
ATGCAGGGGCAAATTGACCTGTGGAAGACTTTTTAAGGTGACGGACTGACTGAG
TCAAGAGAAGGTCTACACATCATAGATTATGAGATTTCGACCAAATTTTGGACGAGCT
CCAGAGAGAAGGTCTACACTGCGGCTTTTCCAGATTATGGACAGAGCCTCAGGGTG
GTAATGTCATATCAGGACTCATACACTTCTCTACAGGTCTGCTGCTGCTCGGTATGCT
GGAGGAAATAGATATGTTCCCTACTCCTGTGACAGACAAGACTGGCGGTGGGTGGACC
GGACACAAGGAGGCTTTGGAAGGCTAAAGACAGAGGGATGGAGTGGTCGTAAGGG
CTTGTGCTAAATACGCCACGTGAGATGACTCGTCTTGTGCGACTGTAAGGAAAGTGCTAATT
AAGGAGATAACAGGTAACATCAACTGGAGTACCCCTCTTGGCCAGCTCAGATAACTTT
CATCGCTTTGCTCAGAGAGCATAGGGCTCAGAAAATGACAACACTCACCTTCTTGCTG
TGTTCCTGAAATTGTCTAAGAGCATCGGATTAAAGAATATATAGCCAGAAGAGACATGG
ATAATCGGCTTTAAGAAGACTCCTCGAGGATCTTTTAGAATATCAATCAATAGACACTCT
AGCATCTCAATAGCATCTTCTTCTCAGACAGTCATGCTTGGCGGTGTATCATCAAT
CATCATAAGCCTGTCCAAATTTACATGTGTTCTTTATGGCCTTCTCCTGCTCCAC
GACTTCTTCGAATACAAACCCTTTGTCCATGGAGCCTATGATCTTCCATACATTCAGACGG
GCTTTATTCCGGAACAACTGCTGTTCGAGACATTACCAAGGTACGAGCGCCCCACAACC
AAGGACTCTATCATCATTTTCTGTAGCAAGAGACTTGGGACCAGAAGCAAGAATCAGCA
GCAATCGGCTCTCGGAGACTAGCCCTCTGACGCGAGATTCATCTCTTGGATTTGGGT
AGGAGCATCCATTTTTAAAGTATATGATCAGGACAGTTCCTCAGTCCTGTCACAGAGGG
CCTATCATTGCAGAAAGTGAGGTTAACAGGAAAGAAGCAGCAACCTTAGAGCTAAAGAC
TTTCTCTTCTTTAGGAGGCGCTTCCATCAAGTCAGGCTCAGTAGAACTCCTTCTAGA
AGCACCACAGTCGATCAATCTGCATTCTCTACTGTCCTCTGGTAATATGTACTGCGGC
GTGTTGTTAAGAGAGAGATCACACAGAACATGGACGACGTGTTCTGACAAACTAGCTTG
TGTATCAGGCGTCTGTCGATGAAGCAAGATATGCGACCCATTCTTGAAGATGTGTG
CATCCCTACAGGCAATTCTTCCCCTGATTTGCTTCTCTCAGTGTCAGTCCCATCCCCCAT
AGGAGTGGCAGAAACAAATGGTGGAATTCCTCGGGAAGATCCCCAGAAAATCTGGTGCCAGAA
TTGCTCTCAGAGAGGGTGCAGGGGCGAGTCGGGAAAGAAGAATGGAGCGAAGGT
GAGTTGATAAACAACGTAATCTAAGCTCAAACTGTCTGCTCGTGGAGCATTTGGGT
TGTTCTAGCAAAATTGGCTGAGCAGCTATAGTGCGAAAAGTGGGGAGGCAGAGGT
GGGAGTCACAGTGCCTACACCCTGCAAGAGCAGTTTTTAATTGAAGTGCGCAATGACAA
GCGGGTGCTTCAAGGAAGGCGTTGCTTGGATAGAATTGTGGTGGCGAAaACTGTGA
AAGTTAGCTTGAATGAAaGAATGATCTATGAGAGCACCTCTCCCGGATAGCAGCGGC
CTATGAATCCTCTACTTAGGGTGCTGAAACTAGTGAGCGCCATTTGCTCCCATCGGC
TAGAGCTCGAAGACATCATCTCTCTATGGCAAAGAGACTCTTGAGAGCTAATAAATGCA
TGTTGGGGCATAATCAAAAGGGTGTCACACTTGCAACTGGAAATAAGAATGCTC
ACACAATTGACTGGGATTAGTGATTCGGAGCAGATCGTTTGGTAGAATACACAGATCC
GGAGTTTGGACATCGTTTCTCAGATCTCTAGATGCTCTTCTGGAGCAATGTCAAGCC
ACCAACTATAAACCTAACCTGTACATAGTGCGTTGACTAACACGGCAGCATGTGGG
AAGCGCGGGAGGAACATATATGTGGTTTGGGTCAAGGGCTATTGTGTATTTCAACA
AGCATTATTTGGAGCTAGTAAAGGAGAAATGGGTCTCGGACTGCCACCT
TCACCCTAAATGCGAAGAATGATGACTCATTGCTCCAGATGTTTCAATGGAGCCTTC
AAAACCGGTAGTCGCCCTTTATTCAATGTGTTTATACCTCCGCTCCGAATGATTTC
TTAACGGTGAGGAGATATCGATTGTGGACATTCGGTTCAAGATGAAAGCCCTGAT
CAAATCAAGACTATTGTCAACACTGTTTCCTGCATACAGTACAGTCTCTGTGACACC
CTCTCGGGTGAGGAGATATCGATGCTATATCCTCAATGGTGAGCAGAAATCATAGCAGTA
ATTCTGTATTCAGGGAACCTCACATGCTGGGAGATTGAGAGCCAGCTTAAGCGAT
CGGAGCTGATCGGGCTAATAGGGACTGCTATCGGTGCCTCATGCTTGGTGTCAGCCA
TTTTCATCCGCATGATTACTGTTTGGTCTTTGGAAACTTTAACAAGAATGGGTTGAGTGT
TGTTTTTGGCAATGATAAAGGGAATATCAAGCCAATTGTGGTCAGAGCCTGGTCAG
ATTGCAGGATGGCTGAAAGAGAAAAAAGGAGATGGAACAAGCTGTCAAGGAGGAGGATAAT
TGATGAATAGCATTMTATTCTAAAATAGTGATCGAGAGAAAAACAAAAACAAAAAAATAAAA
AACAAAAAACATATACATATAAAAATAGGAGCAATAACTGAAGATCAAGGAAACACCCATGT
ATTAAAGAGGATCTAAGAGAAAAAGGAGAGAGGAAGACTGGCAAAAGCTAAAAGAGA
TAGAAATAAGGAAAAACAAAAAGATTTTCCTGAGAGGCGACACATAAGGATGAGG
GATCAGATGCAAGCTCTCGGGAACCTTGGAAGGGTTCTTGAAAAAGCTAAAAGACAAAA
ATTGCAGAGAGAGGGAACCCCAAGGTCTGAGCTGACTGGCGACATCTGAC
CATTTGCTCTTTACTGAAAGACCAATCCTGATATAGATGACTTCTAGTTGTCTGGCT
ATGAGTGTCAGTATCGTACAAAGGCTGGATGATGGGTATGGAGGGCAGCAATGGT
ATTGCAGAGAGGGGAACCCAAGTTGCTCTGATTGCTGACTGGCGACATCTGAC
CATTTGCTCTTTACTGAAAGACCAATCCTGATATAGATGACTTCTAGTTGTCTGGCT
ATGAGTGTCAGTATCGTACAAAGGCTGGATGATGGGTATGGAGGGCAGCACCATT
GTGGGT

*Coding sequences of identified open reading frames are underlined; deduced amino acid sequences below, overlapping sequence of open reading frames U2 and U3 gene are in italics.

Deduced Amino Acid Sequences RFFRV Genes

N Gene RFFRV
MDHDNEKPISYTSIAEVDPNVAIGSTYIQGEPYIGKSAATGITRKGGAQKDWTKDMIR
GVRVFLPQTDANLLNIAGETEAPELEKTYTQDPEKKGILKKSFESKWEFANWANLVDL
QSNTGNIKPGRFYPSALFSTAIAKGAVPLAPAMKDLGD PPVVKAPDDLHPPTGDIEWH
GDKISVDEAAYIGYAWLIMPRFTIKAESKDEIAASSKAFDTLRRLLPEITKQPVLVSVV
TQLRLAYHGTLP DPSAYLAAEVAMRRAMNIEYDLKADRTECKAGEHFPGCQLRLQIDTI
PQYDGSFHWGFGQVGMOLAGYSLAMLHAGLALYGIKTIA DLRLM1NWR CYDNYIADEIK
EGPLLADDPWRASYLLAPNIRTPLSMGKHSIVAYLGLSIQSAANISTGAPSPPEGVKM
NELIRKTVYDVHADVSEWDNSLQSPSTVTTMIGGQVIPFKGVDPKRVNLDLSRMFTQR
QTPLYEVPPHNQRERRRSPSVSSVHTSSRDDEGSWEGDNENEELRKLHERRGQYEEDT
LGGFYSAT.

P Gene RFFRV

MANRVRKIHSVSSVNDPAEAEWQVALQYWAKRILSTDKECTRITSMVAHMSV
VKNLDCDAVWRVWALLALAWMKESPVDGIAMLALLEFGAKHVQRRLADLSKIG
PRIDDDFERLNTNSIARVPKFKFKENSITDDEKKLLEKAAAIALSDLGKKCSY
TGFCYYADDNSVGD

M Gene RFFRV

MSNFRTLMKFAKMSLTSKSKYKVGLGIDELGQSNVNIHEEGEDHTSIYESPS

G Gene RFFRV

MYHLIVLVMLGQRAVAEPADIARAIAKIQYAERLRENKTGLRIELSSRDPA
QSAASPPDVPATKQPATKPAATTAAGTSAPIKVGLPESYLRQVVEPWFTVC

Page 11 of 13
WMSTCEVQGDVYQVSLGTAKFHRFLNQIRAPFIVDDPCTPSAPCKGSGLDLVLAKIEEN
PRFTTMMGELTPRYNWDTHKVVQVHLPQVTSILSDACGFLHGYYVYQLMSGRIVS
SVGTLQFGDKVKKPICTEWKGPPMPFVLPDSQVASTSEQRLQDLHQCRTKEVVLNA
LATKRLPSITLFEGLYKGSESYGLVSRRKGLLYAAPCPSVEYTDLHEVNEGNIWMVNVNG
REVCGCLDGGLNFAVKSGCVVNPNASVSILLGEWKVISDRDGKLLAEPIPKAGWGSIPAL
ENISAAFGDYLASLEQPPLWDDNGPIIIPSTNSGTGDPVHSGASSLWSSMSLASKITALM
PLLAVVVVGIMCCR.

U1 Gene RFFRV

MSCLTQDLRKEIRERVNSISIQNSVTTIIEEEVLWVGLAYISIALGCHRQLQARIKNSVE
RRQRFRGDVGLLPDTGPA.

U2 Gene RFFRV

MEEKCSDSDFKELTDAIAEGVWASPLYPITLATIIFLILLIFVVAWRAAVIAKIRHRIDE
STARRLRPDKFGGRP.

U3 Gene RFFRV

MSPQHGASALISGVDPHDSLIESYPILVGNVYATLILTVTIVSLSFLATIIFSSSVNNLT
DIRGVLVHLYHLEOVSEFASHALAAVCSAQTSTSSLTRELEQFRJGQVTEVTPSSGATGE
LSIPQRYRMLGVEKDMLENEMFIAEHLV.

L Gene RFFRV

MEKSFLFDRIEDSVLHSLPLIEELCFCRPDKETSDYPAIPQPDEFTISRRPELIELRSLTLG
AISGVGCWCLAYMLRUWIEAKDIMRLMAEYYQSSTHPEIASDFNVCGLFSRLHDQ
WGENQHPSALQDIWNVFVAQYQSDAIDNWTYYRILSAALLWSNHKERNQSEFQNSI
AKAGWGVRAINGVEVTHKLLTRERLGGVLTVGAYWCLLELANQPPRLFRKSSLLECEK
DLYLQRWISLFLLCNCQNAFEAPIQPLQPKHLIKYMGRGDIILATEGNEGYNAIKTIESIMV
SAHKGLEDIESPTGDKFYEFITXGKSCHLESSSSAMRKIIHIGEIVTPEVAIEMACYR
HWGHPNPVGGTLAVRENTAQLPNTNERLMLADNYLLRLSHEYEEHRGWPPGVRY
EAAPEIAKDLFNYKWSTNQFPPTASQVRNSWFFFYDSDLFKNQEPILSHSLDSHHSV
GRSAFASTMCLKKNLSSPSRRLQSTSLAYEIDVNNKFLDSIDSTENGLSNDDLSSVLLREKE
RELKVKGFRFSLMTYKYLRFTATEYLIAKAHLPVLPIEMMQGQIDLWKTGFHAVRTVS
QEKSTHHHMIHVDFKEWNQFQRESTAPVFQIMDRAGWSNSRTHHNFSRCEFVYGAYGD
RIMDFPIGLTDNWPGCTGHKGFFELRQKGWSVVGALLIRHVMRTGLHGVLOQQG