
Address for correspondence: Guangyou Yang, Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, 46 Xinkang Rd, Ya’an, Sichuan, 625014, People’s Republic of China; email: guangyouyang@hotmail.com

Novel Divergent Rhabdovirus in Feces of Red Fox, Spain

To the Editor: Rhabdoviruses (family Rhabdoviridae) are enveloped single-stranded negative-sense RNA viruses belonging to the Mononegavirales order. The International Committee on Taxonomy of Viruses recognizes 11 genera (Cytorhabdovirus, Ephemerovirus, Lyssavirus,Novirhabdovirus, Nucleorhabdovirus, Perhabdovirus, Sigmavirus, Spirivirus, Tetraviridae, Tubuviridae, Vesiculovirus) (1). In addition, many recently described rhabdoviruses remain unassigned. Rhabdoviruses contain 5 major genes, encoding for nucleoprotein (N), phosphoprotein (P), matrix (M), glycoprotein (G), and RNA-dependent RNA polymerase (L). The Rhabdoviridae family includes pathogens of various animal species, humans, and plants. Viruses of the genus Lyssavirus are the most relevant to public health because they can cause rabies. Bats are the driving force within this genus; foxes and various other species of wild carnivores also can be infected with lyssaviruses and transmit them to humans and dogs (2).

During a viral metagenomic survey, conducted as described previously (3), of fecal samples collected from 4 red foxes (Vulpes vulpes) that were found dead in Álava, Basque Country, Spain, we identified the complete coding sequence and the partial leader and trailer sequence of a novel rhabdovirus, tentatively called red fox fecal rhabdovirus (RFFRV; 15,541 nt, GenBank accession no. KF823814; online Technical Appendix, http://wwwnc.cdc.gov/EID/article/20/12/14-0236-Techapp1.pdf) by mapping 8,287 of the 56,519 sequence reads in the sample of a red fox. A proportion of obtained reads contained sequences that were ≥99% identical to mitochondrial DNA of V. vulpes, which confirmed that the sample was collected from a red fox.

The obtained sequence of RFFRV was partially confirmed by specific primers and Sanger sequencing of PCR amplicons. Five major and 3 minor open reading frames (ORFs) were identified that had a genome organization similar to that of other rhabdoviruses (Figure, panel A). No significant hits were obtained by BLAST analysis (http://blast.ncbi.nlm.gov/Blast.cgi) of N, P, M, and G nucleotide and amino acid sequences, which was reported previously for novel divergent rhabdoviruses (4).

Predicted N, P, and M genes of RFFRV consist of 1,629, 2,490, and 813 nt, respectively, encoding for 543, 830, and 271 aa (online Technical Appendix Table 1). In addition to the absence of significant hits observed by BLAST analysis, no significant sequence homology was observed with known rhabdovirus proteins in pairwise alignments. Furthermore, no conserved motifs were detected in N, P, and M genes of RFFRV that are commonly observed in rhabdoviruses. However, intergenic regions between all major ORFs contained relatively conserved motifs that could be transcription termination/polyadenylation sequences (A/U) C(U), similar to other rhabdoviruses (5). Adjacent to this termination signal was a stretch of conserved nucleotides that might function as a transcription initiation signal (online Technical Appendix Table 1).

The amino acid sequence of the G protein consisted of 669 aa and contained an N terminal signal peptide (1-MYHLIVLVLMLQRA-VA-17), a noncytoplasmic domain (aa 18–646), a transmembrane domain (647-ITALPPLSLAVVGV-IMCC-667), and a cytoplasmic tail of 2 aa, similar to other rhabdovirus G proteins as predicted by using Phobius and TMHMM (http://www.cbs.dtu.dk/services/TMHMM) (6,7). We predicted 3 potential glycosylation sites in the ectodomain at positions 38–40.
(NKT), 554–556 (NAS), and 592–594 (NIS) using NetNGlyc 1.0 (http://www.cbs.dtu.dk/services/NetNGlyc).

Between the G and L genes, a complex intergenic region was present that contained 3 ORFs of 246 nt (7,413–7,658 aa), 231 nt (7,716–7,946 aa), and 459 nt (7,893–8,355 aa), of which 2 were overlapping frames (U1–3). Additional ORFs between G and L genes were detected previously in other rhabdoviruses (8,9).

We detected transmembrane domains in the amino acid sequences of all 3 additional ORFs, suggesting they might act as viroporin (8,9).

The L gene of RFFRV contained 6,591 nt (2,197 aa). We detected several conserved domains and motifs, including RNA-dependent RNA polymerase, mRNA-capping region, mRNA capping enzyme, and virus-capping methyltransferase. Alignment of the deduced amino acid sequence of the L gene with the L gene of various other viruses belonging to the Mononegavirales order by using MAFFT version 7 (http://mafft.cbrc.jp/alignment/software/) and subsequent phylogenetic reconstruction by using a maximum-likelihood tree (WAG+F+I+G model with 100 bootstrap replicates in MEGA5 [http://www.megasoftware.net]) suggested that this virus belongs to a novel genus of the Rhabdoviridae family. In addition, pairwise identities of the deduced amino acid sequence of the L gene of RFFRV with that of other rhabdoviruses of the Rhabdoviridae family were only ≤35% (online Technical Appendix Table 2).

Because the fox was found dead and no tissue samples were collected, whether RFFRV played a role in the animal’s death is unknown. In addition, multiple attempts to isolate this virus on various cell lines of eukaryotes (Vero E6, MDCK, CRFK, N2a, and BHK cells, primary fox kidney cells) failed because of the absence of cytopathic effects and viral replication by quantitative reverse transcription PCR, despite a high number of reads in the original sample. The fox might have acquired the virus through spillover from a small prey, such as a bat, and additional studies are required to elucidate the prevalence, original host, and pathogenic potential of this novel virus.

Acknowledgments

We thank all researchers and institutions for their invaluable help during sampling and for providing the specimens used in this study, especially Patricia Lizarraga, Laura Elorza, Ricardo Gutierrez, and Luis Javier Chueca.

This work was funded by the European Community’s Seventh Framework Program (FP7/2007–2013) under the project “European Management Platform for Emerging and Re-emerging Infectious Disease Entities” European Community grant agreement no. 223498; the Virgo Consortium; and the Niedersachsen-Research Network on Neuroinfectiology of the Ministry of Science and Culture of Lower Saxony, Germany. In addition, this research was funded partially by the Basque Government through the research group on “Systematics, Biogeography and Population Dynamics” (ref. IT317-10; GIC10/76).

A.R.-G. holds a postdoctoral fellowship awarded by the Department of Education, Universities and Research of the Basque Government (ref. DKR-2012-64) and was awarded a short-visit research grant from the ConGenOmics Research networking program of the European Science Foundation to visit the Department of Viroscience, Erasmus Medical Centre and develop the current research project.
Ngari Virus in Goats during Rift Valley Fever Outbreak, Mauritania, 2010

To the Editor: Ngari virus (NRIV) is a single-stranded RNA virus belonging to the family Bunyaviridae, genus Orthobunyavirus. The genome comprises 3 segments, the small (S), medium (M), and large (L) segments, which encode the nucleocapsid (N) protein, the 2 glycoproteins Gn and Gc, and the RNA-dependent RNA-polymerase, respectively. Sequence analysis showed that NRIV is a reassortant between Bunyamwera virus (BUNV) and Batai virus (BATV), both from the genus Orthobunyavirus. S and L segments derived from BUNV, and the M segment derived from BATV (1,2). NRIV is more virulent than BUNV and BATV and is associated with hemorrhagic fever. NRIV was first isolated from serum samples as a result of the Rift Valley fever (RVF) outbreak in Mauritania, we collected 163 serum samples (62 from camels, 8 from cattle, and 93 from small ruminants) (5). RVFV RNA was isolated from serum samples as described previously (5). Further molecular testing of the samples was conducted by a SYBRGreen-based real-time reverse transcription PCR (RT-PCR) adapted from a conventional RT-PCR and based on generic primers (bun_group_forw 5′-CTGCATA- CACCAGCAGTTTTTGAC-3′ and bun_group_rev 5′-TGGAAGGTAGACCCATCGTACGGAAC-3′) that target a 250-nt sequence of the S segment of Bunyamwera serogroup members (6). Real-time RT-PCR was performed in a CFX 96 real-time PCR system (Bio-Rad, Hercules, CA, USA) by using 5 μL RNA with a QuantiTect SYBR Green RT-PCR Kit (QIAGEN, Hilden Germany) in a final volume of 25 μL. Cycling conditions included RT at 50°C for 30 min and 95°C for 15 min, followed by amplification with 44 cycles of 95°C for 15 s, 55°C for 25 s, 72°C for 30 s, and 77°C for 5 s. A melting curve analysis was then performed starting with 95°C for 60 s, and a temperature gradient was conducted from 68°C to 94°C in increments of 0.2°C.

Of the 163 serum samples tested, 2 samples from goats resulted in a positive signal with cycle thresholds of 23 (sample 51) and 28 (sample 65), respectively. Both samples showed similar melting peaks at ≈78.2°C and shared the identical partial nucleotide sequence of the S segment. The sequence belongs to the Bunyamwera serogroup, but the short partial sequence was not sufficient for accurate virus determination and identification. For this reason, both serum samples were used to inoculate cell monolayers of Vero E6 cells that were assayed for virus replication. Only sample 51 displayed a cytopathic effect after 72 h and was further analyzed. We isolated the viral RNA from cell culture with TRIzol reagent.
Novel Divergent Rhabdovirus in Feces of Red Fox, Spain

Technical Appendix

Technical Appendix Table 1. Characteristics of RFFRV genes and intergenic sequences*

<table>
<thead>
<tr>
<th>Gene</th>
<th>Length, nt</th>
<th>Length, aa</th>
<th>Conserved intergenic sequence between 2 ORFs†</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1,629</td>
<td>542</td>
<td>UAG-60nt-ACAAAAACCUACACGCUAUUG</td>
</tr>
<tr>
<td>P</td>
<td>2,490</td>
<td>829</td>
<td>UAA-75nt-UCAAAAACCUACACGCUAUUG</td>
</tr>
<tr>
<td>M</td>
<td>813</td>
<td>270</td>
<td>UAA-23nt-ACAAAAACCUACACGCUAUUG</td>
</tr>
<tr>
<td>G</td>
<td>2,010</td>
<td>669</td>
<td>UAA-70nt-ACAAAAACCUACACGCUAUUG</td>
</tr>
<tr>
<td>U1</td>
<td>246</td>
<td>81</td>
<td>UAA-25nt-ACAAAAACCUACACGCUAUUG</td>
</tr>
<tr>
<td>U2</td>
<td>231</td>
<td>76</td>
<td>NA</td>
</tr>
<tr>
<td>U3</td>
<td>459</td>
<td>152</td>
<td>UAA-15nt-ACAAAAACCUACACGCUAUUG</td>
</tr>
<tr>
<td>L</td>
<td>6,591</td>
<td>1,196</td>
<td>NA</td>
</tr>
</tbody>
</table>

*NA, not applicable; ORF, open reading frame; RFFRV, red fox fecal rhabdovirus.
†Start and stopcodon of the flanking genes are underlined.

Technical Appendix Table 2. Pairwise amino acid identities between the L protein of RFFRV and other rhabdoviruses

<table>
<thead>
<tr>
<th></th>
<th>RFFRV</th>
<th>LNYV</th>
<th>BEFV</th>
<th>RABV</th>
<th>IHNV</th>
<th>RYSV</th>
<th>PRV</th>
<th>SIGMAV</th>
<th>VISV</th>
<th>TBIV</th>
<th>BASV</th>
<th>FARB</th>
<th>LBV</th>
<th>SHIBV</th>
<th>OZEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFFRV</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>LNYV NC</td>
<td>27</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>BEFV NC</td>
<td>31</td>
<td>20</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>RABV SRV</td>
<td>34</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IHNV L4</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>RYSV NC</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>PRV HM</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SIGMAV Q</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>VISV AAA</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TIBV GQ</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BASV JX</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>FARB HM</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LBV JX</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>SHIBV ADD</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>OZEV FJ</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Red Fox Fecal Rhabdovirus, Partial Genome (GenBank Accession No. KF823814)*

```
GGATATCAAGTCCACAATACCTTTATATGTGCATGATCATGCACTACCATATTCTACG
CATACGACTCCAGGGAGTACACTAAAAAAGACGTAACACAGACCTTTGACATTACGT
CAAGTCTAGTTTTAATTCCGTTTAATTTCCGATACGATAACGAAACGCAAAT
CTCGTACACTTCAATAGCGGAGGTCTTCTGTATAATGTGGGCAATTGGGCAACACGCAAGTTACG
CACTAACAGGGGGGCACAGAAAAGACGTGGACAAAGACATGATTCCGTGGAGTGAGCTT
TATCGCAGCCAGACTGTAGCTAATCTGCTAATCTCATAGCAGCCGGAAAACCGAAGCC
CTGAGCTGGAGAAGTACACCCATCAAGATCCGGAAAAAGAAAGGGCATCTTGAAAGAA
ATTTGAAAGCAAGTGGGAGTTTCTGCAATTTGGGCAACCTGTGCTTGGCATTTTGCAAA
```

Page 1 of 13
ACTGACGACACCAAGAAGAAGCTAGAAAGGGCTGAGCAATCTTGTCGAGCCTATCTTGTCCGATCTAGG
GAAGAAGTGCAGCTATACTGGATTTTTGCTCTATGCGGATGATAGCAACGTCCTATATTG
ATATGATGTCGCGGGGTGTAAACGCGCTCTCTGCGGATTGGATCTGAGGATCTGATTTG
GTGTTGGAAGCCTGTTGGAGTATAGTGAAGAGAAGGACACCCTATCTTTTGTGATGAAGTAG
AGCGCATTTGGAGGAATCTCTGCAGAAAAAACCAAGCCCCACCTGAAGAAAAAGATGTGCG
AGGGTTATTCGGAAGAAAGGGAATTTCGAGCGCCAGACAGCTATAAGATGAGTGC
GCACCCTTCTCTACTGAATCTTTCTCTCTAGCGCCCAAGAGGAGCACAGAAGGTCGAGGC
TCGAGAACTTTCTGGACGACACCAGAAGAGTGGAGACCGCAGATCGAGACTGAAACAGAGC
TAGCCGATCTAGCGCCAGCCGCAGCTGACTCAGTCACGCTGATTATCAGGGAGATCG
AGAATTTCCTTCTGATGCTCTAAGGCTAGTCCCCCAACTGGACACAGTATAGACT
GCGACTCTAGCCAAAATCGGGGCATCAACCTTTAGCGCTAGAGCGACAGCCAGCTCTCC
CCCGGAAATGGAAGGAAACCCTGGGATGAGGCCACCAAGGCGATGATCCTGAAGAGGTAG
AGTGATGTTACGCGGGATACGAAGAGGGCTAGAAGAAAGAGGCTGCAATTGGGAGG
CCGCAACGAGTAAGTGGAGAAATAGAAGGTTAGCGAAGAAGGTGCTGCTGC
TTGAATGAAAGACACAGAGAAAGGCGACCTTTAATCTGATCAACACCTCTGTGA
AAATCTAGACTGGCGAGTGCTGCTTCTGGAATTCAGAAGGTCTCTTCCTCCAA
GCACGCCAGGCTGGCTGGATCGGGAATAGGCCACTCCCCATAGGCCACAAAGCAGAGG
CAGTTATGGAATTCTGTAGGAATTGCTTTCTCTACATCAAACCTCTAAAGTCGGGAG
TACGAGGCGCTATGCAAGAGATGAGCCGCGATCCATCTTGAAGGCAGGATCGCAG
GTTATTACCAGCGCTGTACCCCTCCCCTCCCCAGGTTATCACCCTGGAGATATTACTGCGGAGT
TCTCTCAAAAGCTCTCCCTCCCCCGAGGGCGAAAGGGAAATTCACCGAAGAGTTCGG
ACTGATGTTCAGCGGAGTCAGAAAGGGCTAAGAAAGGAGGCTCAATTGGGAGG
CCAAATGGGTGACACGCATCTGGAGGCAATTGCAAAGTGGGCACCCCAACTA
TTGGGTTTCAGGTAGGTACTTTGCTCAAATCATTCAAAATCTTACTTACCTAAAGAG
GGAGGAAACAAACCGTCAACAAAAAGGAGGATCGACGCCTCCACCTCCACTCGGCAC
CTCGAAAGAAGAAGCTGTAATAATTCAGTCAAGCTAGGCCCATAGCCAAAGTGCCCC
ACCAGAAGGATCTCTGCACCAGCACCTCTTTAGAGCAGGAAAGACCCGACCCGAGAAG
CTGGATGACTGCGGAAAACCATCAAGGGTGATATCTGCCCAGGATCGGAGCGTTATGG
AATTTCGCAACAAATGGAGGCGGAGCTTGCAACACTACCTACCATCATGTGCTGCGAGG
ACAAAGTTCAGGTGGGCTATATATCTTACACGCTAAGGGAGTTGCTCACAAGAACAGCTAA
AGAATCTCTTAGAGTTGTGTCAACAAACATGGGAGAGGCTCTCCAGCTGTTATGTG
AACATTTTGACATTAAGAACTACAAGAGCAGATCTCAGCTTGGACAGCTAATTGGGCAA
TGAAGGATAAAAGCAGAGATGCCAAGGGTGCCATGGGAATATACCTCCAAGGATAGGA
GAAGCATATGGAATGCTGCTTGGGGTGCAGTTTTAATCTTAAATGAAATAATTAG
TCTAACCCTCTGTAGTTGAGTCTCTCTATATTAGCTCTACAAGTGAAGTAGGTCTTTCTC
TCATCTTCATTTCAAACCAAGCGCTGCAATGAGCAATTGGGGCCAGGCTAGGTATTTA
CTCTGATGAAATTTCGATACCATGCTTTGAGACACATCTAAATCTAAGTAAAGTTAC
TTGGAAATGGTTGACGAAATTGGGCTAATGGTAAGTAGTTTCTTTTCTAC
GAAGACCAGATACGCTGCATTTATTGACAGAGACCCCTCTACTCTTTAAAGAGTAGGTA
CGACACCATGAGGGGCTTGGGTTTATCCCATATATCCTGAGCAAAAGAACATAGGTAG
GGAACACTGCGCGGAGCCAGGCTAAGAAGATGTGTTTCTGTCTATTTAACTTAACCTGGA
GTCTCTGAGCCCTCTTGTATTTCGGGAGGCTGACATCAGCAGCATTCTTGAC
GGAATGGGAAATTGTGCAATGGAGAAAGTCGGGGTTGGCAAATATGATGATCTTGTCAACT
AGACCAATGGGGAGGTTCCTGATGGGTTTTACCCGATACATCTCAGTAAATGTGTT
AGACACCTCATGCTCTTTCCGTCTAGGTGCCGTGATGAGTTACGATGATTACGGGGAT
TTCTGTTCCGACCACGTGGGAGAAGCATACCTTTGATGATACAGGATGACATTC
GAAGACGGATAGGGCTCAATCATTAACTCCCGCTCCCCCTTGTGGTCTTTCACTCTTTT
ACACCAACGCCTAAAGCAGATTCACCCGCCGACTAGCAGTCGAGAGCCTAA
GGGAAGTTCTGTAGTCTACCTTTCAATGACAATACACTCTGCTCCAAGAAGGTAGCAG
AACATCGTGCTATTGCTGGATGGGGCTGGCTCTAAAGGCAATTAAGCAGAAAGTATT
CCGCTGTGAGTTGATTGAATCAAAAAACTAACCTAAAATAGTTATAATGTATCA
TCTAATTAGTTCTCTTTGTATTAGCTATACGATGACAGAAGAGTGAGCGAGCCGAGCTAC
TGACAGCCAGCAAGATCAGTACAGTACAGGAGAGGCTAGAAGAATAAGACGC
GGTCTGAGGATAGCTGCTGCGATCGAGATCAGGCGGCTCAAGACGCAAGCATCCCCACC
TGATGCTGACTGCGACTAAGCAGCGCTGCTACCAAGGCGCTGCTACTAGCAGTGCG
AAGCTACACCCGGATTAAGGGGTGTTGGCTGAGGTCTGAATACCTGCTGACAGGTGTT
GGAGCGTCTTGGTACCCGCTGCTGACAGTCGAGAATGCTGTGATTG
TGCAATCAGATCCAGGAAAAAGGGGAGTGCAAGACGCTATAGAAGGTCGAGGAACA
CCCAATGGAGATGATCAGTGTTTATACAAATTTCCGGATCCGGGATCTCCCTGCA
GCCTCAGCCAAAGCACTTGATCAAATGTACCGAATGGGTGACATCATCTCCTGCCCCAC
AGAAGGAAACGAAGGGGTACAATGCATAGAAAGCAATAGAAAGCATCATGGTCGGTT
CTGCACATAAGCAGACACTGGGGGCAACAAAAATCAGAATCTGCTCATCTGCTAGCAT
TGAGAAAAATCATCCATATAGGGGAGTAGATACCCCCCTGAAAGTTCGACATAGATG
GCAGGATGCTACAGACACTGGGGGCAACAAAAATCAGAATCTGCTCATCTGCTAGCAT
GCAGTCCGAGAGAAGCGAAGGGACTGGGCCTACGAAATGAAAGGGTGCTGACTCTGCT
ACTAGCCTGCTGATCTCAACTATTTGTGGTTGAGGAGTTATTTGGAAGAGCATGGGAG
GTGGCCCCCAGGGTAGTATGAAGCAGGCGGCCAGAGATAGCCAAAGACCTGTTCA
ACAAGTGTTTTCTGTAACATAGACAGCTTATGCAGAAATTCAGAAATTCAGA
TCCTCAGCTAAATTTCAGACAAGTCTCACTCAGTGGAACGTACCGGCTCCCTGTCGAC
TGAGAAAATCATCCATATAGGGGAGTAGATACCCCCCTGAAAGTTCGACATAGATG
GCAGGATGCTACAGACACTGGGGGCAACAAAAATCAGAATCTGCTCATCTGCTAGCAT
GCAGTCCGAGAGAAGCGAAGGGACTGGGCCTACGAAATGAAAGGGTGCTGACTCTGCT
ATTCTGTATTACGGGCAACTTCACATGCTGGGAGATTGAGAGCCAGCTTAAAGCGATCGGAGCTGATCGGGCTAATAGGGACTGCTATCGGTGCCTCATGCTTGGTGTCAGCCA
TTTCTCATCCGCATGATTACTGCTTTGTTTCTTGGGAACCTTTACAAGAATGGGGTGGATGT
TGTTTTGGGCAATGATAAAGGGAATATCAAGCCAATTGTGGTCAGAGCCTGGTCAG
GTGAGTCCACTCCTGTAACCTAATAACCCAAAAGGAACCTCAAAACGCTGTTCATCTA
TGTTGAGATACTTGGGGGCTTATTGTGGAGCTCTGCTGTATTGATAGAATTCACACTCAA
GGTTAGAGTGCTGGTGAAGAGAAAAATATGAACTCAGGCTTCTGCCGAAGGGAGTTAACAT
CAGCTTGGCAGTAGCCACTTGAGGAACGATACCTGCGAGAAAGATCGATTTCGGGGGTATAAT
TGATGAAATAGCAGCTTTGATAATATGATACGAGAAAAACAAAAACTAAAAAA
AACAAAAAACATATATACATATAAAATTAGGAGCAATAACTGAAGATCAAAGAG
CATTAAAAGAGATCTAAGAGAIAAAAAAGAGAGAAAGGACCTTGCAAAAAAGCTAAAAGA
TAGAAAATAAGGAAAACAAAAGATTTTCTGAGAGGGCAGCACATAAGGATGATAGG
GATCACAATGGAAGGTCCCTGGAACACTTGGAAGCTTTGTAAGAAAAAGCTCAAAGACAAAA
ATTGAAGAGAGAGGGAAACAAACAGTCTGCTGTGACTGTGCGACATCTGAC
CATTTGCTCTTTACTGAAAGAGCACAATCCTGTATAGATGACTCTTCTAGTTGTCTGGCT
ATGAGTGTACGTATCGTACAGGAGCATGGGTGATGGGGGTATGGAGGGCAGCACCATT
GTGGGT

*Coding sequences of identified open reading frames are underlined; deduced amino acid sequences below, overlapping sequence of open reading frames U2 and U3 gene are in italics.

Deduced Amino Acid Sequences RFFRV Genes

N Gene RFFRV

MDHDNEKPIYTSIAEVPDNAIVGISTIYIQGEIPIIYGKSAATGITRGKGAQKDWTKDMIR
GVRVFLPQTDANLLNLIAGETEAPELEKYTIQDPEKKGILKKFESKWFANWANLVDL
QSNTGNIPKGRFPYYSALFSITAIGKAPVLPAMKDLGDPVVYVKAPDDLHPTGDIEWH
GDKISVDEAAIYGYGAWLIMPRTIKAESKDEIAASSKAFTDLRLRRPEITKQPVLVSVV
TQLRLAYHTVLVPGSAAYLAAEVAMMRANMIEYDLKADRETECAEHFPCQILRVLQDI
PQYDSGFWFGQVQGLEMAGYSALNMLHAGLDIYGTKTIADLRMLINWRCYDNIADEIK
EGPLLADDPWRAAASYLLAPNIRTPLSMGMKHSIVAYLGLSIQSAANISTGAPSPPEGVKM
NELIRKTVYDHAVAIVSEWDNLQPSSTVTVMIGGQVIPFKGVDPKRVNDLSRMFTQR
QTPLYEVPVPHNQRRERSPSVSSVHTSSRWRDEGSWEHGNNEEELLRLH ERRQY EE D T N LGGFYSAT.

P Gene RFFRV

M Gene RFFRV

MSNFRTLMFK A S KMSLTSKS KYKV L GIGDELGQSNVNI IHEG EE DI HTSIYSESPPSSKK KTSRTMRPWVYPTYPEQKN I VRGLRGR A PPKK VVL S INL TGVES PLDFPEVATVIS DILD G MEMSAM R KLVLOMLSTRPMGRFSDGCYRYIFSNCFTSCFPS SCLGEOFMHDSGDFCSTTFDDKTYFGSYRTLTFEDAIGSNHQYPLPWHL SYTNALKPDFTPGLAVCRAKGKF L YLDDKYFSFKTYS D NIVL LLM GR P KAI K QK.

G Gene RFFRV

MYHLIVLVLVML GQR A V AE PADI ARA A KI QYAEERLRNK TGLRIELSSRDPAQQ ASAASPDVPATKQPATKA ATTAAGTSAPIKVGLP ESEYL RQVVEPFWTV CSEK VPR TLT DVVHRIL RKGDGK AHRMLRGTPGNDHSVYTKFGSGISPAPSRLYVL S LEQVQRPQLYRVSRLR SSSTPHR VV LVCEVM S AFS PI LN V EE MECTGVLGK LS DTSSVT LN VDPGYV LTMIRVCSCS AM RV KRW T WTSFFNV KER LED RWRIPP D PKE C ESH CEPI FAGEVTSAVRGS VPDYCYA
WMSTCEVQGDVYQVSLGTAFHRFLNQIRAPFIVDDPCTPSAPCKGSGLSLVLAKIEED
NPRFTTMNGELTPRNYWDTVKVYQVHLPGVTSLDASCGLHGGYVYQMSGRIVS
VSVGTLQFGDKVPPICETEWGPMPFVLPDQSVASTSEQLRQDLLHCQTRKEVVLNA
LATKRLPSITLFEGLGYKGSEYGLVSRKGLLAAACPSVEYTDLEHEVGNIWMMVNNG
REVGCLDGGLNFAVKSVCVQVNPSASVILLSGEKWISRDGGKLLAEPIPKAGWGSIPAL
ENISAAFDGDLASLSEQPPLLWDGGNGPIIPTSNSTGDPVIHSGASSLWSSMLASKITALM
PLLAVVVGIMCCRR.

U1 Gene RFFRV

MSCLTQDLRKEIEIRERVNSISIQNSPVTTLIIIIEVLWVGTLAYISIALGCHRYLQARIKNSVE
RRQRFRGDGVLLPDGTGPA.

U2 Gene RFFRV

MEEKCSDSYFKELTDAIAEGVWASPLYIPITLAVIIFLILLIFVVAVRAAVIAKIRHRIDE
STARRLRPFDGGERP.

U3 Gene RFFRV

MSPQHGASALISGVDPDHFLSILIESYPILVGNYAATLILTVLVSFSLATIIFFSSVNNLT
DIRGVLIIYHLGANEVSEFASHALAAVCASQSTSARLTELEQFRLSQVTEVTSSSVE
LSIPQRYRMALLVEKDMLENEMFIAEHSIV.

L Gene RFFRV

MEKSFLFDRIPDSLHSLPLILREELCFCRPDKETSDEYPAPAIPQPDEFTISRRPELIELRSLSLTG
AISGVGCIKWLAMRLNVIEAKIDMLMAEYQHSTIHPEIASDFNVCEGLSRLHDQ
WGENQHPSALQDIWVFAQYQSDAIIDNTWTKYRLSAAALLWSNHKERNQSEFQNSII
AKAGWGVRAINGVEVTKLTRGLRGLTvGAWCLLCAANQPPRFRKSSLLEECEK
DLYLQRWISFLCNCQNAFGGIQLPQPKHLIKMYRMGDIILATEGNEGYNAIKTIESIMVG
SAHKQLEDESISPTGDKFLYEFITKXGLSAHCHELSSAMSARIIHIGEIVTPGVAEMACYR
HWGHPNEIPVGGLTAVRENATAQLPTNERLMLIAADNYLLRLSYEEHHGRWPPGVRY
EAAPEIAKDLFKNKWSMTNQFPGPTASQVRNSWFFVTYDSLFDKNEPQPIISLISDHSV
GRSALSEMCMLKNNLSSPPSRVQLQSTSLYAEIDVNVKFLDSIDSTENGLSNDDLVILLEKE
RELKVKGRRFLMTYKLYRTFTAYELYIAKHLRVPVLPEITMMQGQIDRWFKGAVRTV
SQEKSTHHMIHVFDEKFKNFQREESTAPVFQIMDRAFGWSNISRTHNFFSRCFVGYAG
RIDMFPILGLDNPWCPWTGHKGGEFGLRQKGGWSVVGALLIRHVMRLTGLHGKVLIQG