Novel Bunyavirus in Domestic and Captive Farmed Animals, Minnesota, USA

To the Editor: Xing et al. (1) conclude that evidence of infection with a severe fever with thrombocytopenia syndrome (SFTS)–like virus or Heartland-like virus (HRTV) was found in many captive large mammals from much of Minnesota, raising the specter of widespread distribution of a novel pathogen. Although it is likely that HRTV can be found beyond the areas in northwestern Missouri, where it was discovered (2), we contend that this conclusion is not substantiated by the data presented by Xing et al., which were generated by an assay that was developed to diagnose SFTS virus infections in China (1,3). The study used an ELISA developed for an SFTS virus recombinant nucleocapsid protein that detects SFTS-reactive antibodies (3). The conclusions reached by Xing et al. are based on the assumption that the SFTS assay developed in China will cross-react with HRTV antibodies (1). This assumption remains unsupported because the SFTS assay has not been evaluated for cross-reaction with antibodies to other non-SFTS members of the genus Phlebovirus (1,3). In addition, it is well recognized that serologic tests, like the ELISA, are often group reactive (4), requiring neutralization tests to confirm antibody presence and provide specificity. Alternative explanations include the possibility that positive results from testing by Xing et al. may have been caused by cross-reaction with antibodies directed against other known tick-associated phleboviruses endemic to North America, such as Lone Star virus (5), which is not known to be pathogenic. In the absence of confirmatory data generated by an independent method, the report by Xing et al. (1) should be considered speculative. Reports suggesting substantial expansion in the geographic range of a pathogenic organism should be based on rigorously validated laboratory methods.

Roger S. Nasci, Aaron C. Brault, Amy J. Lambert, and Harry M. Savage

Author affiliation: Centers for Disease Control and Prevention, Fort Collins, Colorado, USA

DOI: http://dx.doi.org/10.3201/eid2002.131360

References


Address for correspondence: Roger S. Nasci, Arboviral Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd, Fort Collins, CO 80521, USA; email: RNasci@cdc.gov
phleboviruses, which are closely related to SFTSV and HLV, may be more generally distributed in the midwestern United States and emphasizes the need to substantiate our serologic evidence with virus isolation and genomic characterization, which are underway.

Zheng Xing and Michael Murtaugh
Author affiliations: College of Veterinary Medicine, University of Minnesota at Twin Cities, St. Paul, Minnesota, USA (Z. Xing, M. Murtaugh); and Medical School, Nanjing University, Nanjing, China (Z. Xing)

DOI: http://dx.doi.org/10.3201/eid2002.131790

References


Address for correspondence: Zheng Xing, 300D Veterinary Science Building, College of Veterinary Medicine, University of Minnesota at Twin Cities, 1972 Commonwealth Ave, Saint Paul, MN, 55108; email: zxing@umn.edu

Infectious Schmallenberg Virus from Bovine Semen, Germany

To the Editor: The teratogenic Schmallenberg virus (SBV) (genus Orthobunyavirus) was detected in bovine semen in a recent German field study (1). Vector-borne transmission by Culicoides spp. biting midges is most common (2), but viremial transmission of SBV might contribute to the spread of this virus to previously unaffected regions. We investigated the infectivity of SBV RNA–positive semen by experimental subcutaneous injection of cattle and interferon α/β receptor–deficient (IFNAR–/–) mice (3).

Commercially produced semen straws with egg yolk–based diluent were used for the injection of 6- to 9-month-old heifers. The straws originated from 6 semen batches (quantification cycle [Cq] values 26.4–36.4) collected from 6 bulls (designated A–C and E–G) during August and September 2012 (1). To increase the probability of SBV infection of injected cattle, 5 straws of semen (~220 µL each) from 1 batch from an individual bull were pooled and diluted in minimal essential medium with antibiotics to 4 mL. Six cattle (C1–6) were subcutaneously inoculated, each with a pool from 1 of the 6 bulls. To investigate the infectivity of a single insemination dose (1 straw), 5 cattle (C7–C11) were subcutaneously inoculated with single straws from bull F that had been confirmed to contain infectious SBV. Serum samples were obtained on several days (Figure), and clinical signs and rectal body temperatures for the infected cattle were monitored daily.

In addition, 20 SBV RNA–positive semen batches (Cq 25.9 to 36.5) collected from 11 bulls (A–K) during August–November 2012 (1) were subcutaneously injected into 40 IFNAR–/– mice (4–6 weeks old). For each batch, 2 mice were each injected with half of a semen straw (80–120 µL). All mice were monitored clinically and weighed daily. Samples of serum, liver, and spleen were harvested immediately after euthanasia at 22 days postinjection (dpi).

All serum samples and organ homogenates were tested for SBV RNA by using small segment–specific quantitative reverse transcription PCR (4). Serum samples were tested for SBV-specific antibodies by using the ID Screen Schmallenberg Virus Competition ELISA (IDvet, Montpellier, France), according to the manufacturer’s instructions; selected serum samples were also tested by neutralization test against an original SBV isolate from Germany, as described (5).

SBV infection was confirmed in 5 of 11 injected cattle: C3, C5, and C9–C11. SBV RNA (Cq 25.0–29.3) was first detected in serum at 3 to 6 dpi and persisted for 2–4 days. Seroconversion occurred at 8–12 dpi (Figure). None of the SBV-infected animals showed obvious clinical signs or fever; this finding is in accordance with reports of subclinical SBV infection in adult cattle (5–7). Samples from the other 6 cattle and all IFNAR–/– mice had negative results (data not shown).

The 2 infectious semen batches contained moderate (Cq 26.4) or low (Cq 34.2) viral loads of SBV RNA, indicating that a high sensitivity is required for reliable SBV RNA detection in semen samples (1). The onset of SBV infection in the 3 animals injected with single semen straws ranged from 3 to 5 dpi, and not every straw was infectious, although biologic and technical replicates of straws from 1 semen batch showed similar PCR results (data not shown) (1). Possible explanations for differences in the infectivity of individual straws are that the viral RNA load of an SBV-containing straw does not necessarily correlate with infectivity or that the infectivity of 1 straw is lower than the minimal cattle