Septic Arthritis Caused by *Streptococcus suis* Serotype 5 in Pig Farmer

To the Editor: *Streptococcus suis* primarily infects pigs, but >700 human infections have been reported (1). Cases in human occur mainly in persons who have contact with pigs; these infections are most frequently reported in Southeast Asia (1). In humans, *S. suis* most often causes meningitis, but endocarditis, pneumonia, toxic shock–like syndrome, and septic arthritis have also been reported (1–3).

*S. suis* is classified into serotypes on the basis of the polysaccharide capsule. Among pigs, many serotypes cause severe infections, but nearly all human cases have been attributed to serotype 2 (1,3). Other serotypes have been isolated from humans only in a few cases: meningitis caused by serotype 4 (2); fatal bacteremia caused by serotype 16 (4); sepsis caused by serotype 24 (5); bacteremia, meningitis, and endocarditis caused by serotype 14 (6–8); and spontaneous bacterial peritonitis caused by serotype 5 (5). Here, we report a case of septic arthritis caused by *S. suis* serotype 5.

The patient was a 65-year-old pig farmer who had cut his hand at work; he had not noted cases of severe illness among his pigs. He had a history of benign hyperplasia of the prostate gland, and 1 year before the current illness, he received a diagnosis of right-sided coxarthrosis, for which radiographic imaging showed grade II changes, loss of cartilage, and subchondral sclerosis. One week after the patient cut his hand, his right hip became increasingly painful, and he sought treatment at a hospital. On examination, the trochanter major region was tender (not noted at previous examinations), and passive movement of the hip was painful. Blood test results showed a slight elevation of C-reactive protein (CRP), to 31 mg/L (reference <5 mg/L). The symptoms were interpreted as trochanteritis, and treatment with nonsteroidal anti-inflammatory medication was instituted. The next day, the patient returned to the hospital with worsened pain and was admitted. He had a temperature of 37.7°C and a heart rate of 80 beats/min; blood test results showed a leukocyte count of 11.2 × 10^6 cells/L and CRP of 127 mg/L. Radiologic images of the hip were unremarkable, but ultrasonography-guided joint puncture showed pus and blood in the synovial fluid. Cultures were secured, and gram-positive cocci in short chains were noted in all blood culture bottles and in the synovial fluid culture. Treatment with intravenous cefotaxim was started.

Microbiological diagnosis of *S. suis* infection was made on the basis of colony morphology, a weak reaction with Lancefield anti-D antisera, and a score of 2.31 according to matrix-assisted laser desorption/ionization–time of flight mass spectrometry (Biotyper version 3.0 software; Bruker Daltonics, Bremen, Germany). On the fourth day after admission, treatment was changed to benzylpenicillin (3 g 3×/d). The pain from the hip gradually declined, and CRP peaked at 337 mg/L on the fifth day after admission. On the seventh day after admission, treatment was changed to oral penicillin (2 g 3×/d) and was continued for 6 weeks.

At follow-up 6 months after the initial illness onset, the impairment in the patient’s hip movement had worsened. Radiologic imaging showed necrosis of the femoral head, and the patient underwent total hip replacement surgery. During surgery, no signs of synovitis were noted, and 5 intraoperative cultures were negative. The procedure was completed without complications, and the patient’s symptoms resolved.

The *S. suis* isolate from the patient was determined to be serotype 5 by Statens Serum Institut (SSI;...
Christian Gustavsson and Magnus Rasmussen

Author affiliations: Central Hospital, Kristianstad, Sweden (C. Gustavsson); and Lund University, Lund, Sweden (M. Rasmussen)

DOI: http://dx.doi.org/10.3201/eid2003.130535

References


Address for correspondence: Magnus Rasmussen, BMC, B14, Tornavägen 10, 22184 Lund, Sweden; email: magnus.rasmussen@med.lu.se

Bartonella henselae and B. koehlerae DNA in Birds

To the Editor: Bartonellosis, a globally emerging vector-borne zoonotic bacterial disease, is caused by hemotropic, gram-negative, aerobic, facultative intracellular Bartonella spp. (1). Of the 30 Bartonella species/subspecies, 17 have been associated with human infections (2,3). Each species has a reservoir host(s), within which the bacteria can cause intraerythrocytic bacteremia with few or no clinical signs of illness (1,3); the bacteria are transmitted by hematophagous arthropod vectors (1). Various Bartonella spp. have been identified in domestic and wild animals, including canids, deer, cattle, rodents, and marine mammals (1,4). Bartonella DNA from the blood of loggerhead sea turtles (Caretta caretta) has been PCR amplified and sequenced (5); the fact that Bartonella DNA was found suggests the possibility that persistent blood-borne infection can occur in nonmammals and that the host range for Bartonella spp. may be larger than anticipated.

Growing evidence suggests that wild birds play key roles in the maintenance and movement of zoonotic pathogens such as tick-borne encephalitis virus and Borrelia and Rickettsia spp. (6–9). Bartonella grahamii DNA was amplified from a bird tick in Korea (10). The substantial mobility, broad distribution, and migrations of birds make them ideal reservoir hosts for dispersal of infectious agents.
To investigate whether birds might be a reservoir for Bartonella spp., we screened 86 birds for the presence of Bartonella spp. DNA.

The primary study site was a residential backyard in Morehead City, North Carolina, USA (34°43.722′N, 76°43.915′W). Of the 86 birds screened, 78 (16 species) were captured enzymatically extracted by using conventional Bartonella genus PCR primers targeting the 16S–23S intergenic spacer region: oligonucleotides, 425s (5′-CCG GGG AAG GTT TTC CGG TTT ATCC-3′) and 1,000as (5′-CTG AGC TAC GGC CCC TAA ATC AGG-3′). Amplification was performed in a 25-mL reaction, as described (3). All PCR reactions were analyzed by 2% agarose gel electrophoresis. Amplicons were sequenced to identify the Bartonella sp. and intergeneric spacer region genotype. To compare sequences with those in GenBank, we identified bacterial species and genotypes by using Blast (http://blast.ncbi.nlm.nih.gov/Blast.cgi). DNA extraction and PCR-negative controls remained negative throughout the study.

Results are summarized in the Table. None of the screened birds were anemic, but 5 were PCR positive for Bartonella spp. (3 for B. henselae and 2 for B. koehlerae). B. henselae was amplified from 2 Northern Mockingbirds (Mimus polyglottos) and 1 Red-winged Blackbird (Agelaius phoeniceus) (GenBank accession no. KC814161). The DNA sequences were identical to each other and had 99.6% (456/457 bp) sequence similarity with B. henselae San Antonio 2 intergenic spacer region genotype (GenBank accession no. AF369529). B. koehlerae was amplified from a Red-bellied Woodpecker (Melanerpes carolinus) and a Common Loon (Gavia immer) (GenBank accession no. KC814162). The DNA sequences were identical to each other (404/404 bp) and to GenBank sequence AF312490. Lice (Mallophaga order) were found on 5 Boat-tailed Grackles (Quiscalus major), but no ectoparasites were observed on Bartonella spp.–positive birds. Hemoparasites (Haemoproteus and Plasmodium spp.) were detected in 7 of 86 birds, indicating exposure to hematophagous ectoparasites, but hemoparasites were not detected in the Bartonella spp.–positive birds. No bacteria were visualized in Bartonella PCR–positive blood smears.

Bartonella spp. are increasingly associated with animal and human illnesses; thus, the identification of reservoirs and increased understanding of Bartonella spp. disease ecology are of public health importance. Our finding of 2 pathogenic species not previously reported in birds has expanded the potential sources for zoonotic infection.

There is growing evidence that migratory birds serve as reservoirs for Bartonella spp.