surveillance. Second, health workers at all levels should be trained to recognize the disease. Third, a detailed assessment of the extent of Buruli ulcer in the 3 counties visited as well as in other counties should be prepared. Fourth, partner/donor support for Buruli ulcer activities should be enhanced. Fifth, capacity of the National Reference Laboratory to be able to perform PCR for confirmation of Buruli ulcer cases should be expanded. Last, Buruli ulcer should be incorporated into the national surveillance system to enable better data collection.

MAP International (employer of J.A. and F.Z.) provided financial assistance for the assessment in the counties.


Author affiliations: Neglected Tropical Diseases Control Program, Monrovia, Liberia (K. Kollie, T. Mulbah); Komfo Anokye Teaching Hospital, Kumasi, Ghana (Y.A. Amoako, F. Sarfo, R. Phillips); Medical Assistance Program International West Africa Region, Abidjan, Côte d’Ivoire (J. Ake, F. Zaizay); Agogo Presbyterian Hospital, Agogo, Ghana (M. Abass); American Leprosy Missions, Greenville, South Carolina, USA (L. Lehman); Korle Bu Teaching Hospital, Accra, Ghana (A. Paintsil); World Health Organization (WHO), Monrovia (C. Lugala); WHO, Brazzaville, Republic of Congo (A. Tiendrebeogo); and WHO, Geneva, Switzerland (K. Asiedu)

Address for correspondence: Yaw Amoako, Department of Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana; email: yamoako2002@yahoo.co.uk

DOI: http://dx.doi.org/10.3201/eid2003.130708

References


Candidatus Neoehrlichia mikurensis and Anaplasma phagocytophilum in Urban Hedgehogs

To the Editor: Candidatus Neoehrlichia mikurensis is a member of the order Rickettsiales, family Anaplasmataceae (1). Manifestations of infection with these bacteria are atypical and severe and include cough, nausea, vomiting, anemia, headache, pulmonary infiltration, malaise, myalgia, arthralgia, fatigue, recurrent fever for ≤8 months, and/or death (2–5). Candidatus N. mikurensis has been detected in Ixodes ovatus, I. persulcatus, and Haemaphysalis concinna ticks in Asia (1,5).

Candidatus N. mikurensis has been identified as one of the most prevalent pathogenic agents in I. ricinus ticks throughout Europe (2,3,6). Rodents of diverse species and geographic origins have been shown to carry these bacteria, but transmission experiments have not been conducted to unambiguously identify natural vertebrate reservoirs (1–3,5–7). This emerging tickborne pathogen has been detected mainly in immunocompromised patients in Sweden (n = 1), Switzerland (n = 3), Germany (n = 2), and the Czech Republic (n = 2) and in immunocompetent patients in China (n = 7) (2–5).

Anaplasma phagocytophilum is an obligate, intracellular, tickborne bacterium of the family Anaplasmataceae and causes granulocytic anaplasmosis in humans and domestic animals. In Europe, I. ricinus ticks are its major vector, and red deer, roe deer, rodents, and European hedgehogs (Erinaceus europaeus) are suspected reservoir hosts (8).

Northern white-breasted hedgehogs (Erinaceus roumanicus) are urban-dwelling mammals (order Eulipotyphla, family Erinaceidae) that serve as major maintenance hosts for the 3 stages of
I. ricinus ticks (9). However, E. r. macrococcus hedgehogs have not been studied for their ability to carry A. phagocytophilum. In addition, no suspected reservoirs other than rodents have been investigated for Candidatus N. mikurensis. The purpose of this study was to determine whether this hedgehog is a potential reservoir of these 2 bacteria.

We conducted an ecoepidemiologic study during 2009–2011 to obtain information about ticks and tickborne pathogens of urban hedgehogs in a park on Margaret Island in central Budapest, Hungary (9). Ear tissue samples were obtained from hedgehogs anesthetized with intramuscular ketamine and dexmedetomidine. Ear tissue samples were obtained from hedgehogs anesthetized with intramuscular ketamine (5 mg/kg) and dexametomidine (50 µg/kg).

DNA was extracted from samples by using the QIAamp DNA Mini Kit (QIAGEN, Hilden, Germany) or the Miniprep Express Matrix protocol (MP Biomedicals, Santa Ana, CA, USA). We used quantitative real-time PCRs that partially amplify the heat shock protein gene (groEL) of Candidatus N. mikurensis and the major protein surface 2 gene (msp2) of A. phagocytophilum (3). PCR was performed in a 20-µL volume containing iQ Multiplex Powermix (Bio-Rad Laboratories, Hercules, CA, USA) in a LightCycler 480 Real-Time PCR System (F. Hoffmann-La Roche, Basel, Switzerland). Final PCR concentrations were 1× iQ Powermix, 250 mmol/L of primers ApMSP2F and ApMSP2R, 125 mmol/L of probe ApMSP2P-FAM, 250 mmol/L of primers NMikGroEL-F2a and NMikGroEL-R2b, 250 mmol/L of probe NMikGroEL-P2a-RED, and 3 µL of template DNA.

To confirm quantitative PCR results, we performed conventional PCRs in a Px2 Thermal Cycler (Thermo Electron Corporation, Waltham, MA, USA) on selected PCR-positive samples for both pathogens (3). Sequences obtained were submitted to GenBank under accession nos. KF803997 (groEL gene of Candidatus N. mikurensis) and KF803998 (groEL gene of A. phagocytophilum).

Candidatus N. mikurensis was detected in 2 (2.3%) of 88 hedgehog tissue samples. Formerly, rodents were the only wild mammals found to act as potential reservoirs for this pathogen. Results of studies that attempted to detect these bacteria in common shrews (Sorex araneus), greater white-toothed shrews (Crocidura russula) (2,3), or common moles (Talpa europaea) (2) were negative. However, our results indicate that northern white-breasted hedgehogs might be a non-rodent reservoir for Candidatus N. mikurensis.

The low pathogen prevalence observed in this urban hedgehog population compared with that in rodents in other locations (2,3) might be caused by use of skin samples. Skin samples from rodents showed only 1.1% positivity in a study in Germany; however, average prevalence of Candidatus N. mikurensis in transudate, spleen, kidney, and liver samples from the same animals was 37.8%–51.1% (2). Although we did not test other organs, we hypothesize that prevalence of Candidatus N. mikurensis infection in urban hedgehogs is probably >2.3%.

We detected A. phagocytophilum in 67 (76.1%) of 88 urban hedgehogs. This prevalence was similar to that found among European hedgehogs in Germany (8). I. ricinus ticks are more common than I. hexagonus ticks in this urban hedgehog population (9). Thus, I. ricinus ticks can acquire these bacteria when feeding on hedgehogs and the risk for human infection with A. phagocytophilum in this park in Budapest is relatively high.

Neoehrlichiosis and granulocytic anaplasmosis have not been diagnosed in humans in Hungary. This finding is probably caused by diagnostic difficulties rather than absence of these pathogens in the environment. Infection with Candidatus N. mikurensis and A. phagocytophilum cause predominantly noncharacteristic symptoms. Laboratory cultivation and serologic detection of Candidatus N. mikurensis has not been successful, and this pathogen has not been identified in blood smears. Thus, accurate diagnosis of suspected cases requires suitable molecular methods.

Parks can be considered points of contact for reservoir animals, pathogens, ticks, and humans. Our results indicate that E. r. macrococcus hedgehogs play a role in urban ecoparasitology of ≥2 emerging human pathogens. To better understand the urban cycle of these pathogens, potential reservoir hosts, ticks collected from these hosts, and vegetation in parks should be investigated.

Acknowledgment

We thank the Middle Danube Valley Inspectorate for Environmental Protection, Nature Conservation and Water Management, Hungary, for approving capturing and anesthetizing of hedgehogs and sample collection.

This study was partially supported by European Union grant FP7-261504 EDENext and was cataloged by the EDENext Steering Committee as EDENext148 (www.ede.next.eu). G.F. was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and an NKB grant from the Faculty of Veterinary Science, Szent István University. E.C.C. and H.S. were supported by EurNegVec Cost Action TD1303.

Gábor Földvári, Setareh Jahfari, Kriszta Rigó, Mónika Jablonszky, Sándor Szekeres, Gábor Majoros, Máría Tóth, Viktor Molnár, Elena C. Coipan, and Hein Sprong

Author affiliations: Szent István University Faculty of Veterinary Science, Budapest, Hungary (G. Földvári, K. Rigó, M. Jablonszky, S. Szekeres, G. Majoros, V. Molnár); National Institute of Public Health and Environment, Bilthoven, the Netherlands (S. Jahfari, E.C. Coipan, H. Sprong); Hungarian Natural History Museum, Budapest (M. Tóth); and Budapest Zoo and Botanical Garden, Budapest (V. Molnár)

DOI: http://dx.doi.org/10.3201/eid2003.130935
Rickettsia and Vector Biodiversity of Spotted Fever Focus, Atlantic Rain Forest Biome, Brazil

To the Editor: Rickettsia rickettsii, R. felis, and R. parkeri, strain Atlantic rainforest, have been characterized after being found in areas in which Brazilian spotted fever (BSF) is endemic (1,2), which indicates the complexity of their epidemic and enzootic cycles. The Atlantic rain forest is one of the largest and richest biomes of Brazil, and antropic action has intensely influenced its transformation. Most BSF cases and all BSF-related deaths are recorded in this biome area.

Many BSF cases were recorded in Paraiba do Sul river basin, one of the most urbanized and industrialized areas of Brazil. To better understand arthropod and Rickettsia diversity in this area, we analyzed 2,076 arthropods from Rio de Janeiro state, Atlantic rain forest biome.

During October 2008–November 2009, we collected ticks and fleas from hosts and environments in 7 cities where high numbers of BSF cases were recorded (Rio de Janeiro State Health Secretary, unpub. data) and where high numbers of BSF cases were recorded (Rio de Janeiro State Health Secretary, unpub. data). PCR analysis showed Rickettsia DNA in 11 individual or pooled samples. This finding indicated minimal infection rates of 0.2% (4/1,723) for A. cajennense ticks, 50% (2/4) for A. dubitatum ticks, 3.0% (1/33) for B. microplus ticks, 100% (1/1) for C. canis ticks, and 2.8% (4/143) for C. felis fleas. Expected amplicon size, determined by using the gltA 401-bp primer set, was observed for all positive samples. Two were also positive by PCR

Address for correspondence: Gábor Földvári, Faculty of Veterinary Science, Szent István University, 2 István St, Budapest H-1078, Hungary; email: foldvarigabor@gmx.de

References


Rickettsia and Vector Biodiversity of Spotted Fever Focus, Atlantic Rain Forest Biome, Brazil

To the Editor: Rickettsia rickettsii, R. felis, and R. parkeri, strain Atlantic rainforest, have been characterized after being found in areas in which Brazilian spotted fever (BSF) is endemic (1,2), which indicates the complexity of their epidemic and enzootic cycles. The Atlantic rain forest is one of the largest and richest biomes of Brazil, and antropic action has intensely influenced its transformation. Most BSF cases and all BSF-related deaths are recorded in this biome area.

Many BSF cases were recorded in Paraiba do Sul river basin, one of the most urbanized and industrialized areas of Brazil. To better understand arthropod and Rickettsia diversity in this area, we analyzed 2,076 arthropods from Rio de Janeiro state, Atlantic rain forest biome.

During October 2008–November 2009, we collected ticks and fleas from hosts and environments in 7 cities where high numbers of BSF cases were recorded (Rio de Janeiro State Health Secretary, unpub. data) and where high numbers of BSF cases were recorded (Rio de Janeiro State Health Secretary, unpub. data). PCR analysis showed Rickettsia DNA in 11 individual or pooled samples. This finding indicated minimal infection rates of 0.2% (4/1,723) for A. cajennense ticks, 50% (2/4) for A. dubitatum ticks, 3.0% (1/33) for B. microplus ticks, 100% (1/1) for C. canis ticks, and 2.8% (4/143) for C. felis fleas. Expected amplicon size, determined by using the gltA 401-bp primer set, was observed for all positive samples. Two were also positive by PCR

Address for correspondence: Gábor Földvári, Faculty of Veterinary Science, Szent István University, 2 István St, Budapest H-1078, Hungary; email: foldvarigabor@gmx.de