Letters

References


Address for correspondence: Marcelo Gottschalk, Department of Pathology and Microbiology, University of Montreal, 3200 Sicotte, St-Hyacinthe, Québec J2S 2M2, Canada; e-mail: marcelo.gottschalk@umontreal.ca

Microbiological data were obtained as follows. Tissue samples, obtained by scraping the internal border of skin lesions from patients, were smeared onto a glass slide, fixed with methanol, stained with Giemsa, and examined by microscopy. Slides showing Leishmania amastigote forms were then processed further for molecular analyses. The immersion oil used to examine each slide was wiped off the smear with tissue paper, and then the dry smear was scraped from its slide by using a sterile scalpel. DNA extraction from smear scrapings was performed with the NucleoSpin Tissue kit (Macherey-Nagel, Düren, Germany). Species identification was performed by amplifying the topoisomerase II gene, followed by DNA sequencing (7).

In total, 60 patients exhibited Leishmania-positive cutaneous lesions as determined by microscopy. The topoisomerase II gene was successfully amplified and sequenced from samples from 38 patients. Leishmania species were identified by comparing sequences with those of the reference strains L. infantum MHOM/FR/78/LEM75, L. kilkiki MHOM/TN/80/LEM163, and L. major MHOM/MA/81/LEM265 (7). L. infantum was identified in 36 cases and L. kilkiki in 2 cases (Figure). No L. major isolates were found in this series.

The low proportion of L. kilkiki strains was similar to that found recently in the Annaba focus in northeastern Algeria (5). However, the observation of a new focus of CL and L. kilkiki as etiologic agent may indicate a modification of the epidemiology of CL in Algeria. This focus, located far from other previously described areas where the L. tropica complex is endemic, may reflect geographic spread of this complex in Algeria.

The results of this study can be placed in a larger framework as well. Since 2004, strains in the L. tropica complex have been increasingly reported as responsible for CL...
in Mediterranean countries, in the Near East and Middle East (2), possibly in relation to changes in environmental conditions. Urbanization and/or climatic changes that have occurred in recent years could have played a role in the spread of the disease. The cases reported here were observed in urban areas, which suggests transmission according to an anthropotic mode.

Each species responsible for CL has its own epidemiologic pattern. Clinicians must be aware of the specificity of leishmaniases that may be encountered in North African countries. *L. tropica* complex lesions heal spontaneously over a period of 12 months or more, a duration longer than for *L. major* infections (8). *L. tropica* infections are also less responsive to treatment compared to infections with other Old World *Leishmania* species. In addition, *L. tropica* may cause leishmaniasis recidivans. This type of CL, appearing often years after the initial infection showed signs of complete resolution, manifests as papules that transform slowly into a spreading granuloma resembling lupus vulgaris (6). *L. tropica* can also produce visceral infections on rare occasions, resulting in unexplained systemic illness, including classic symptoms of visceral leishmaniasis, in persons returning from areas where this *Leishmania* complex is endemic (9).

Other epidemiologic studies are required to detect additional foci, including those of the *L. tropica* complex, that may coexist with those of *L. infantum* and *L. major* in Algeria. Travelers to North Africa should also be informed about the existence of this spreading disease (10).

Arezki Izri, Amina Bendjaballah, Valérie Andriantsoanirina, and Rémy Durand

Author affiliations: Hôpital Avicenne—Assistance Publique-Hôpitaux de Paris, Bobigny, France (A. Izri, V. Andriantsoanirina, R. Durand); and Hôpital de Hadjout, Hadjout, Algeria (A. Bendjaballah)

DOI: http://dx.doi.org/10.3201/eid2003.131152

References

Rift Valley Fever in Kedougou, Southeastern Senegal, 2012

To the Editor: Rift Valley fever (RVF) is an acute, febrile, viral disease caused by Rift Valley fever virus (RVFV), a phlebovirus of the family Bunyaviridae that is endemic to sub-Saharan Africa. RVF mortality and abortion rates among young domesticated ruminants and pregnant females are high.

In humans, clinical manifestations range from mild to severe syndromes, which can include neurologic, hemorrhagic, and hepatic features and retinitis, and which sometimes result in death (1). Diagnosis of RVF is challenging for clinicians because clinical manifestations are not specific (2). Heavy rainfall and flooding create conditions for emergence of RVF vectors (Aedes and Culex spp. mosquitoes), and dispersion of this disease into new areas is linked to migration of infected livestock, wildlife, or mosquitoes.

Since 1987, when the Diama dam was built, RVF outbreaks in Mauritania have been reported regularly (3). In Kedougou, southeastern Senegal, RVFV was isolated 4 times from Aedes dalzieli mosquitoes and once from a person with a mild case of RVF (4). We report results of a field investigation and laboratory findings for a human case of RVF detected by surveillance of acute febrile illnesses in Kedougou.

On October 16, 2012, a 27-year-old man (school teacher) who lived and worked in Baya village in the Kedougou region of Senegal (12°27′50″N, 12°28′6″W) visited the Kedougou military health post because of high fever, chills, headache, back pain, myalgia, and arthralgia that started on October 14. He reported regular contact with domesticated animals (cows, sheep, and goats) during farming.

A thick blood smear for the patient showed a positive result for malaria, and specific treatment was given. As part of surveillance for acute febrile illnesses, blood samples from the patient were tested for RVF, chikungunya, dengue, West Nile, yellow fever, Zika, and Crimean-Congo hemorrhagic fever viruses; and for viral RNA and virus (5,6). All test results for IgM against the 7 viruses were negative.

RVFV was isolated from newborn mice that were intracerebrally inoculated with a blood sample from the patient. Viral RNA was detected by reverse transcription PCR in serum from the patient. Phylogenetic analysis of the partial nonstructural protein gene on the small RNA segment showed that the RVFV isolate was closely related to a strain that had circulated in Mauritania in 2012 (Figure).

An epidemiologic field investigation was conducted to assess the extent of RVFV circulation. During this investigation, the case-patient provided an additional blood sample. In addition, 115 contacts of the case-patient, including primary school students, friends, family members and neighbors (median age 12 years, range 6–75 years; female: male sex ratio 1.6) were also sampled and questioned to identify asymptomatic and benign cases. A total of 218 samples from patients attending the nearest health posts in Ibel and Thiokoye villages during October 2012 were also tested during surveillance of acute febrile illnesses.

All 334 samples were negative for RVFV RNA and IgM and IgG against RVFV except for samples from 3 patients, including the case-patient, which were positive for RVFV-specific IgG and malaria parasites. The 2 other patients were a 32-year-old tradesman and a 20-year-old housewife sampled during surveillance of acute febrile illnesses in Kedougou and Bandafassi, which is 30 km from Baya (online Technical Appendix Figure, wwwnc.cdc.gov/EID/article/20/3/13-1174-Techapp1.pdf). No RVFV RNA was detected.