Francisella tularensis subsp. tularensis Group A.I, United States

Dawn N. Birdsell, Anders Johansson, Caroline Öhrman, Emily Kaufman, Claudia Molins, Talima Pearson, Miklós Gyuranecz, Amber Naumann, Amy J. Vogler, Kerstin Myrtennäs, Pär Larsson, Mats Forsman, Andreas Sjödin, John D. Gillece, James Schupp, Jeannine M. Petersen, Paul Keim, and David M. Wagner

We used whole-genome analysis and subsequent characterization of geographically diverse strains using new genetic signatures to identify distinct subgroups within Francisella tularensis subsp. tularensis group A.I: A.I.3, A.I.8, and A.I.12. These subgroups exhibit complex phylogeographic patterns within North America. The widest distribution was observed for A.I.12, which suggests an adaptive advantage.

Tularemia, caused by the bacterium Francisella tularensis, is a potentially severe disease that often causes unspecific symptoms; because of its low infectious dose and ease of dissemination, F. tularensis is considered a category A bioterrorism agent (1). Three subspecies of F. tularensis have been identified; F. tularensis subsp. tularensis (type A) has been identified only in North America. Numerous subtyping schemes have subdivided type A into 2 groups, A.I and A.II (2–8). Group A.I is found primarily in the western United States (3,4), whereas group A.I is found throughout the central and eastern regions of the country and sporadically in some western states (3,4,9).

Groups A.I and A.II differ in virulence, as do subgroups within A.I, although clinical signs and symptoms can be similar. Human infections involving A.I strains are associated with a higher fatality rate than that for infections involving A.II strains (4,10); this finding was experimentally confirmed in mice (11). Kugeler et al. (10) used pulsed-field gel electrophoresis (PFGE) to identify 2 subgroups within A.I, A1a and A1b; this study found A1b strains were associated with higher death rates and were more often isolated from human tissue types that were associated with severe disease. This difference was also experimentally confirmed in mice (11,12). However, virulence testing is not often used in clinical settings because it is slow, complicated, and expensive. Thus, molecular approaches that can rapidly assign an unknown strain to one of the recognized groups with known differences in virulence may provide valuable information to clinicians.

Because PFGE lacks the phylogenetic resolution of some other testing methods (6), we independently identified genetic subgroups within A.I by conducting whole-genome sequencing (WGS) of 13 A.I strains (Figure 1; Table 1, Appendix, wwwnc.cdc.gov/EID/article/20/5-13-1559-T1.htm). The 13 strains were selected on the basis of assignment to PFGE subgroups A1a or A1b (10) and to maximize geographic diversity; the previously sequenced A.I strain Schu S4 (13) was also included. WGS data were generated, assembled, and analyzed as described in the online Technical Appendix (wwwnc.cdc.gov/EID/article/20/5-13-1559-Techapp1.pdf).

Our whole-genome phylogeny revealed 3 major subgroups within F. tularensis subsp. tularensis A.I: A.I.3, A.I.8, and A.I.12 (Figure 1). The names we assigned to these subgroups are consistent with previous phylogenetic nomenclature within F. tularensis (14). With the exception of 1 strain (ND01-1900) that was not assigned to any of the 3 subgroups, all strains previously assigned to PFGE subgroup A1a belonged to the newly designated A.I.12 subgroup (Figure 1; Table 1). In contrast, strains previously assigned to PFGE subgroup A1b were distributed among all 3 of the new subgroups (Figure 1; Table 1). We concluded that results of characterization of subgroups A1a and A1b by PFGE are not in agreement with findings of a robust whole-genome phylogeny and therefore focused the remainder of our analysis on subgroups identified by using WGS.

We observed several differences among the 3 subgroups in the whole-genome phylogeny (Figure 1). The first split separated the A.I.3 subgroup from the A.I.8 and A.I.12 subgroups; a second split separated the A.I.8 and A.I.12 subgroups. A long branch of 25 single nucleotide polymorphisms (SNPs) led to the A.I.3 subgroup, in which relatedness among the sequenced strains was moderate. A branch of 9 SNPs led to the A.I.8 subgroup, and again, relatedness among the sequenced strains was moderate. The branch leading to subgroup A.I.12 was, by comparison, much longer (37 SNPs), and the sequenced strains were separated only by 3 short branches (1–4 SNPs). This pattern of several short branches without hierarchical structuring is consistent...
Table 2. Melt-MAMA primers targeting canSNPs for new phylogenetic branches in Francisella tularensis subsp. tularensis A.I in United States*

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Schu4† position</th>
<th>SNP state, der/anc‡</th>
<th>Primers, 5’ → 3’§</th>
<th>Conf</th>
<th>Temp, °C#</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>A.I.7**</td>
<td>C/T</td>
<td>A: TATTTCAATTTTGGCATGGTACGT</td>
<td>0.80</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D: gggggggggggggggCTTTTCAATCATGTAACCATCATTATTTAaGC</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C: AAGTATGTTGCAAGTAAAGTGAAGA</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>A.I.12</td>
<td>NA††</td>
<td>C/G</td>
<td>A: GCTTATCGCGCAGACATTCACTC</td>
<td>0.20</td>
<td>60</td>
</tr>
<tr>
<td>A.I.12</td>
<td>A.I.13†‡</td>
<td>T/C</td>
<td>A: AAATTTAAAAAGCAAAGAACATTATGATCCT</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D: gggggggggggggggCTTCTACATGTAACCATCATTATTTAaGC</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C: GTATATGAACTTGGAATAGGGTAGATA</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>A.I.16</td>
<td>A.I.16</td>
<td>T/C</td>
<td>A: ATCTTAAAACATCGACACTCTCAACTG</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>A.I.15</td>
<td>A.I.15</td>
<td>A/G</td>
<td>A: ATCACTAGTTATATTGCCTGTC</td>
<td>0.20</td>
<td>60</td>
</tr>
<tr>
<td>A.I.14</td>
<td>A.I.14</td>
<td>T/C</td>
<td>A: GGTATGGCAAAAAATACTTATGGTACG</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>NA</td>
<td>A.I.10</td>
<td>T/G</td>
<td>A: GATCAATTTGGTGTTCG</td>
<td>0.80</td>
<td>60</td>
</tr>
<tr>
<td>A.I.11</td>
<td>A.I.11</td>
<td>G/A</td>
<td>A: AAGGAAACAAAAAAAAACATCATTTGCT</td>
<td>0.20</td>
<td>60</td>
</tr>
<tr>
<td>A.I.3</td>
<td>A.I.3</td>
<td>T/G</td>
<td>A: CTCATTACCTCTAGGCTGATAGAATT</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>A.I.4</td>
<td>A.I.4</td>
<td>T/C</td>
<td>A: TTTTTTCCATATTTTGGTAAATATACATTAT</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>A.I.5</td>
<td>A.I.5</td>
<td>G/A</td>
<td>A: GTTAATGCTGAAATGTCGAGAAatc</td>
<td>0.60</td>
<td>60</td>
</tr>
<tr>
<td>A.I.6</td>
<td>A.I.6</td>
<td>G/A</td>
<td>A: cggggggggggggGGCTGAGTTTTTTTTTTTATAGTGTA</td>
<td>0.20</td>
<td></td>
</tr>
</tbody>
</table>

*T-MAMA, melt–mismatch amplification mutation assay; SNP, single nucleotide polymorphism; canSNP, canonical SNP; con, concentration, μmol/L; temp, annealing temperature, °C; NA, not applicable; der, derived SNP state; anc, ancestral SNP state; D, derived allele primer; A, ancestral allele primer; C, common primer.
†Genomic position in reference A.I Schu4 strain (GenBank accession no. NC_006570).
‡SNP states are listed according to their orientation in the SCHU S4 reference genome (GenBank accession no. AJ749949.2).
§Melt-MAMA primer sequences; primer tails and antepenultimate mismatch bases are in lower case.
¶Final concentration of each primer in Melt-MAMA genotyping assays.
**Assay annealing temperature.
††SNP from (6).
‡‡Assay supplemented with 0.025 U of Platinum Taq DNA polymerase (Life Technologies, Invitrogen, Frederick, MD, USA).
§§SNP from (7).

With a recent radiation, an evolutionary process in response to adaptive change, new ecologic opportunities, or a combination of these factors.

To show more comprehensive phylogenetic patterns, we developed 16 canonical SNP (canSNP) assays as described (online Technical Appendix) and used them to screen 179 F. tularensis subsp. tularensis A.I strains selected from the collections of the Centers for Disease Control and Prevention (Fort Collins, CO, USA). We selected strains that were representative of all states where A.I infections occur and of all PFGE classification types (Table 1). One limitation of our study is that we did not analyze an equal number of strains from all regions of the country. However, our sample reflects the distribution...
of human disease caused by *F. tularensis* subsp. *tularensis* A.I strains: prevalent in the central United States, less common in the eastern United States, and rare in the western United States (4). The canSNP assays were based on 12 SNP signatures (Table 2) from the whole-genome phylogeny (Figure 1) and 4 previously described SNP signatures (6–8). Using these assays, we assigned the 179 strains to 15 *F. tularensis* subsp. *tularensis* A.I subpopulations, including 8 intervening nodes (Figure 2, panel A). We found 6 subpopulations in the A.I.12 subgroup, 4 in A.I.8, and 4 in A.I.3 (Table 1). To identify broad phylogeographic patterns, we created maps indicating specific states where strains from the 15 subpopulations were isolated (Figure 2, panel B). Within these maps, we created boundaries corresponding to 3 regions within the United States: western, central, and eastern.

Each subgroup exhibited complex yet distinct phylogeographic patterns (Figure 2, panel B). Group A.I.12 strains, assigned to 6 subpopulations (Figure 2, panel A), were isolated throughout the United States: all 6 subpopulations were found in the central region, 3 in the western region, and 5 in the eastern region (Figure 2, panel B, top). Group A.I.8 strains, assigned to 4 subpopulations, were found in the central (3 subpopulations) and western (including Alaska and British Columbia; 3 subpopulations) regions, but only 1 strain was isolated in the eastern region (Figure 2, panel B, middle). For group A.I.3 strains, assigned to 4 subpopulations, distribution differed dramatically from the other subgroups; most strains and all 4 subpopulations occurred in the eastern region and just 1 subpopulation in the central region but none in the western region (Figure 2, panel B, bottom).

Conclusions

The occurrence of the A.I.3 subgroup in the eastern United States could be a recent or ancient event. The subgroup may have been introduced more recently from the central region to a naive niche in the eastern region through importation of rabbits (*Sylvilagus floridanus*) as recently as the 1920s (3); before 1937, tularemia was nearly nonexistent in the eastern region (15). If the introduction is recent, the current lack of A.I.3 strains in the central United States could be the result of a selective sweep that nearly eliminated this subgroup from its geographic origin. However, most strains and genetic diversity (i.e., subpopulations) within the A.I.3 subgroup are found in the eastern United States, which may reflect a more ancient history in this region involving early introduction and establishment of this subgroup east of the Appalachian Mountains, with only recent spread to the central region.

If we assume that the greatest genetic diversity in a phylogenetic context implies ancient origins, our findings suggest that the central United States is the likely geographic origin of a common ancestor to *F. tularensis* subsp. *tularensis* subgroups A.I.12 and A.I.8 and, perhaps, the A.I group as a whole. The large geographic range of the A.I.12 subgroup and the phylogenetic pattern of a long branch leading to a polytomy with genetic homogeneity point to a possible adaptive advantage for this subgroup.
This advantage may be related to difference in virulence among A.I strains, as suggested by previous testing in mice of 2 A.I.12 strains that exhibited lower virulence than that of 2 A.I.3 strains (11). Further research is needed to determine whether the genomic differences that define this subgroup are associated with known Francisella tularensis virulence determinants.

Acknowledgments

We thank Mia Champion for her assistance with initial analyses and Laurel Respicio-Kingry for her assistance with SNP genotyping.

This work was supported in part by the US Department of Homeland Security Science and Technology Directorate through award HSHQDC-10-C-00139, the Swedish Civil Contingencies Agency through TA#014-2010-01, the Laboratory for Molecular Infection Medicine Sweden, and Västerbotten County Council. M.G. was supported by the Lendület program of the Hungarian Academy of Sciences.

Dr Birdsell is a postdoctoral fellow at the Center for Microbial Genetics and Genomics, Northern Arizona University. Her primary research interest is the evolution of Francisella tularensis.

References

F. tularensis subsp. tularensis Group A.1

Address for correspondence: David M. Wagner, Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ 86011-4073, USA; email: dave.wagner@nau.edu

SEARCH PAST ISSUES OF EID AT WWWNC.CDC.GOV/EID
Francisella tularensis subsp. tularensis
Group A.I, United States

Technical Appendix

Genome sequencing and assembly

Sequencing of the 13 F. tularensis genomes was performed using an Illumina GA IIx instrument (Illumina Inc., San Diego, CA, USA) (100-bp pair-end reads) at the Translational Genomics Research Institute (TGen; Flagstaff, Arizona, USA) and the sequences were assembled using Abyss v1.3.3 (1). To ensure high-quality data, the genome sequences were filtered to minimize uncertain sequence positions in the phylogenetic analysis. After assembly, sequence reads were re-mapped to their corresponding genome sequence using bowtie2 v2.0.0 (2) and subsequent SNP-calling by samtool mpileup (3) and VarScan v2.3.2 (4) using default parameters except p-value=0.9. Using the SNP information, positions for nucleotides that were supported by <90% of the aligned reads were replaced by the nucleotide symbol “N.” After filtering, a multiple genome alignment was calculated by the progressive Mauve algorithm (5) using the 13 filtered genome sequences and two public F. tularensis genome sequences. These were strain SCHU S4 (acc. AJ749949.2), representing the A.I clade, and strain WY96-3418 (acc. CP000608.1), representing clade A.II and also serving as an outgroup for the phylogenetic analyses. A second filter was then applied to remove all positions within 30-bp of gaps (“-“) or uncertain positions (“n”) to minimize potential misalignment errors. One SNP found to be incorrectly called due to inaccurate mapping in a repetitive region was manually excluded from the alignment.

Whole genome phylogeny

Based on the filtered and aligned genome data, a Neighbor-Joining tree was inferred using MEGA5 software 2 (Figure 1 in article main text) with gaps/missing data treated as complete deletions.
The naming of the branch leading up to major groups separated by deeply rooted splits was based on SNP nomenclature: A.I.12, A.I.8, and A.I.3 (Figure 1 in article main text). All short read archives were submitted to SRA (NCBI BioProject Accessions: PRJNA187553, PRJNA187555, PRJNA187556, PRJNA187557, PRJNA187558, PRJNA187559, PRJNA187562, PRJNA187563, PRJNA187564, PRJNA187565, PRJNA187567, PRJNA187568, PRJNA187569).

Single Nucleotide Polymorphism (SNP) identification for the development of new canonical SNP assays

SNPs were identified by mapping paired-end reads to a high quality reference genome (F. tularensis SCHU S4, acc. AJ749949.2) (6) using BWA short read alignment software (7) followed by SNP-calling using samtool pileup (3) and VarScan v2.2 (min-var-freq 0.9, min-reads 5 and min-coverage 20) (4). Finally, SNPs defining the three clades A.I.12, A.I.8, and A.I.3 were confirmed using an in-house Perl script based on their presence in a multiple alignment of de novo assembled genome sequences. From this information 16 canonical SNP (canSNP) assays were created as previously described (8).

References

 http://dx.doi.org/10.1101/gr.089532.108

 http://dx.doi.org/10.1038/nmeth.1923

 http://dx.doi.org/10.1093/bioinformatics/btp352

 http://dx.doi.org/10.1093/bioinformatics/btp373

