parasites can easily be missed or barely noticeable so that their identification can be quite difficult. In such instances, videodermatoscopy might lead to the diagnosis and should be considered as a useful diagnostic aid. Image storage and sharing can also facilitate collaboration with experts and can enable timely recognition of unusual parasitic disorders imported from different geographic areas or tropical countries.

The cost of the equipment varies according to resolution quality, magnification capability, and image storage facility; costs range from 500 (for simple systems) to 10,000 (for sophisticated systems) euros. The expense is greatly outweighed by the advantages of avoiding the high cost of managing outbreaks of epidemic parasitoses resulting from misdiagnosis, treatment failures, and incomplete posttreatment monitoring (10).

Videodermatoscopy is a noninvasive way to diagnose some pruritic disorders while avoiding unnecessary, uncomfortable, and sometimes expensive investigations and treatments. Physicians without access to such equipment should consider promptly referring patients to the nearest available videodermatoscopy service for effective management.

Maria R. Nasca, Francesco Lacarrubba, and Giuseppe Micali
Author affiliation: University of Catania, Catania, Italy
DOI: http://dx.doi.org/10.3201/eid2006.130767

References


Distinguishing Nontuberculous Mycobacteria from Multidrug-Resistant Mycobacterium tuberculosis, China

To the Editor: Mycobacteria are commonly characterized by positive acid-fast staining. Most mycobacterial species belong to the nontuberculous mycobacteria (NTM), excluding species in the Mycobacterium tuberculosis complex and M. leprae. Both M. tuberculosis and NTM can induce pulmonary infection with similar symptoms and pulmonary radiographic findings (1). These similarities have led to difficulty in distinguishing these infections clinically.

As in many developing countries, the acid-fast stain is the only bacteriologic basis for diagnosing tuberculosis (TB) in primary health care institutions in China, where facilities are limited for M. tuberculosis culture, strain identification, and drug resistance detection. Thus, NTM is easily misdiagnosed as M. tuberculosis, and multidrug-resistant (MDR) TB is unable to be accurately identified. Patients with misdiagnosed TB usually are treated with the standard anti-TB regimens recommended by the Chinese government (i.e., 2HRZE/4HR [2 months of isoniazid (INH), rifampin (RIF), pyrazinamide, and ethambutol, followed by 4 months of INH and RIF 1 time daily] and 2H₃R₂Z₁E₁/4H₃R₃ [2 months of INH, RIF, pyrazinamide, and ethambutol followed by 4 months of INH and RIF 3 times weekly]) (2), which often results in treatment failures. Misdiagnosis is a key hurdle for effective prevention and treatment of TB (3–5). To evaluate the effect of misdiagnosis on TB prevention, we determined the proportion of patients with MDR TB and NTM infection in primary health care institutions in Zhejiang Province, China. Our
findings would be useful for improving TB prevention and treatment.

During 2011–2012, sputum samples from 13,882 patients suspected of having TB in 8 counties in Zhejiang Province were used to culture mycobacteria. Each sample was seeded onto 2 pieces of Löwenstein-Jensen medium. A total of 1,410 samples grew mycobacteria confirmed as acid-fast bacilli by using Ziehl-Neelsen staining. The 1,410 samples were further identified by using the Mycobacteria Identification Array Kit (CapitalBio, Beijing, China). The kit contains 17 types of bacilli-specific 16S RNA probes (i.e., M. tuberculosis complex, M. avium, M. intracellulare, M. gilvum, M. xenopi, M. smegmatis, M. aurum, M. terrae, M. gordonae, M. chelonae/abscessus, M. phlei, M. scrofulaceum, M. fortuitum, M. szulcrai, M. ulcerans, M. marinum, and M. kansasii). With this method, M. tuberculosis and NTM can be distinguished, and the species of NTM can be identified (6–8). Of 1,410 positive strains, we identified 1,332 (94.5%) as M. tuberculosis and 78 (5.5%) as NTM. NTM strains were further identified as follows: M. intracellulare, 39 isolates; M. chelonae/abscessus, 12 isolates, M. kansasii, 13 isolates; M. avium, 3 isolates; M. fortuitum, 4 isolates; and M. scrofulaceum and M. szulcrai, 1 isolate each. For 5 isolates, strain could not be classified.

We detected drug resistance of 1,332 M. tuberculosis strains using a Tuberculosis Drug Resistance Detection Array Kit (CapitalBio) (9). The mutant points for RIF resistance were identified as follows: rpoB/C531G, C531T, CG531AC, A526C, A526G, A526T, C526A, C526G, C526T, T533C, A516G, A516T, G516T, T511C, T511G, C513A, A513T, and C522T (Table). Moreover, the kit contained 5 mutant points for INH resistance, including katG (G315A, G315C, G315T, and C315) and inhA (C-15T) (Table). Of 1,332 M. tuberculosis strains, we identified 1,115 (83.7%) RIF/INH-sensitive strains, 83 (6.2%) M. tuberculosis strains, and 1,024 (76.8%) RIF-resistant strains. Of the 1,410 positive strains, 88 (6.2%) were MDR M. tuberculosis strains.

The epidemiology of TB in Zhejiang Province reflects the situation in China and some developing countries (10). The clinical diagnosis and treatment of >80% TB cases in China is performed mainly by primary health care institutions. However, almost 80% of these medical institutions do not have the capability to culture M. tuberculosis, detect drug resistance, and identify strains (7). Of 1,410 strains obtained from the patients in 8 counties of Zhejiang Province, 218 (15.5%) were MDR TB, INH resistant, and RIF resistant. These affected patients could not be effectively treated with the national standard regimens. Specifically, 88 patients with MDR TB would be at risk for extensively drug-resistant TB, and 83 patients with INH-resistant TB and 47 with RIF-resistant TB would be at risk for MDR TB. In addition, we identified 78 (5.5%) NTM strains. With the acid-fast stain, these illnesses would be misidentified as TB and, in most instances, also would be reported as treatment failures. Clearly, accurate diagnosis provided by the technologies used in this study for distinguishing NTM and M. tuberculosis, Mycobacterium strain identification, and drug-resistance detection would increase the cure rate and effectively prevent TB epidemics.

For INH resistance, katG315 was a main mutant point of the M. tuberculosis strain; 140 (81.4%) of the 172 INH-resistant mutations were related to katG315. For RIF resistance, rpoB531 was a main mutant point; 84 (60.0%) of 140 RIF-resistant mutations were associated with rpoB531. Therefore, in future studies, more attention should be paid to the molecular epidemiology of katG315 and rpoB531.

In conclusion, using the techniques for M. tuberculosis culture, Mycobacterium strain identification, and drug-resistance detection is necessary. It should be urgently pursued for accurate TB diagnosis in primary health care institutions in China to improve the prevention, treatment, and control of TB.

This study was funded by the National Scientific and Technological Major Project of China (grant no. 2009ZX10004-901, 2011ZX10004-901).

<table>
<thead>
<tr>
<th>Drug</th>
<th>Mutant points</th>
<th>Mutant times for single site, no. (%)</th>
<th>Total no. mutant times of sites related to drug resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoniazid</td>
<td>inhA-15 (C→T)</td>
<td>32 (18.6)</td>
<td>172†</td>
</tr>
<tr>
<td></td>
<td>katG315 (G→C), (G→A)</td>
<td>140 (81.4)</td>
<td></td>
</tr>
<tr>
<td>Rifampin</td>
<td>rpoB511 (T→C)</td>
<td>10 (7.1)</td>
<td>140‡</td>
</tr>
<tr>
<td></td>
<td>rpoB513 (A→G)</td>
<td>2 (1.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rpoB516 (A→T), (A→G), (G→T)</td>
<td>19 (13.6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rpoB526 (A→G), (A→T), (C→G), (C→T)</td>
<td>21 (15)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rpoB531 (C→G), (C→T)</td>
<td>84 (60.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rpoB533 (T→C)</td>
<td>4 (2.9)</td>
<td></td>
</tr>
</tbody>
</table>

*No. mutant times for single site/total no. mutant times of sites related to drug resistance.
†A strain simultaneously had katG315 (G→C) and inhA-15 (C→T).
‡Five strains had the double mutation of rpoB.
Kaijin Xu, Sheng Bi, Zhongkang Ji, Haiyang Hu, Feisu Hu, Beiwen Zheng, Bing Wang, Jingjing Ren, Shigui Yang, Min Deng, Ping Chen, Bing Ruan, Jifang Sheng, and Lanjuan Li.

Author affiliations: State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (K. Xu, S. Bi, Z. Ji, H. Hu, F. Hu, B. Zheng, B. Wang, J. Ren, S. Yang, M. Deng, P. Chen, B. Ruan, J. Sheng, L. Li); and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou (K. Xu, L. Li).

DOI: http://dx.doi.org/10.3201/eid2006.130700

References


Address for correspondence: Lanjuan Li, 79 Qingchen Rd, Hangzhou 310003, P.R. China; email: ljli@zju.edu.cn

Schmallenberg Virus Circulation in High Mountain Ecosystem, Spain

To the Editor: Schmallenberg virus (SBV) is an emerging vector-borne virus mainly associated with Culicoides spp. midges (1,2). Factors affecting the density and distribution of vectors may help determine the prevalence of SBV infection in particular areas. Altitude could be one limiting factor for virus transmission; however, little information is available regarding SBV in high-altitude regions.

During December 29, 2012–February 21, 2013, morphologic anomalies were identified in 4 stillborn calves from different farms in northeastern Spain, and infection with SBV was suspected. The cases were clustered in the Ripollès and Garrotxa regions of Catalonia and appeared in beef cattle herds that spent the grazing season (May–November) in the alpine meadows (>2,000 m altitude) of the National Game Reserve of Freser-Setcases in the Eastern Pyrenees Mountains.

The calves had severe arthrogryposis, ankylosis of several joints, abnormal curvature of the vertebral column, and severe muscle atrophy. Malformations of the central nervous system included bilateral hydrocephalus, cerebellar hypoplasia, and micromyelia, characterized by the presence of few neurons in the ventral horns and moderate to severe bilateral reduction of white matter in the ventral and lateral funiculi.

SBV infection was confirmed by real-time reverse transcription qualitative PCR (RT-qPCR) (1,3) or serologic testing in 3 of the 4 calves and all 4 of the mothers (Table). Serum samples were tested by using a commercial indirect ELISA (ID. vet; Innovative Diagnostics, Montpellier, France) and a virus neutralization test using the BH80/11–4 isolate (provided by the Friedrich-Loeffler-Institut, Isle of Riems, Germany) (4). Consistent results were obtained from both of these techniques, and the proportions of calves positive by ELISA and RT-qPCR were similar to those found in previous studies (5).

The neurologic and musculoskeletal lesions found in the calves indicated that fetal infection probably occurred at 5–6 months’ gestation (6). Gestation started in mid-April to mid-May; therefore, maternal infection most probably occurred in late summer 2012 (September–October), when cows were grazing in the alpine meadows.

We then performed a serologic study in domestic and sympatric wild ruminants from the National Game