susceptibility to SBV infection, but differences in seroprevalence suggest different roles for sympatric ruminants in SBV epidemiology. The role of vector species in the transmission of SBV in alpine ecosystems should be analyzed.

Acknowledgments

We thank Mariano Domingo for assistance during necropsy studies of stillborn calves, Joan Planas for technical assistance during livestock sample collection, and the rangers and staff of the Freser-Setcases National Hunting Reserve for their collaboration.

This study was supported by the Departament d’Agricultura, Ramaderia, Pesca, Alimentació i Medi Natural de la Generalitat de Catalunya, and funded by the research project CGL2009-11631 of the Spanish Ministerio de Ciencia e Innovación.

Xavier Fernández-Aguilar, Joan Pujols, Roser Velarde, Rosa Rosell, Jorge R. López-Olvera, Ignasi Marco, Martí Pumarola, Joaquim Segalés, Santiago Lavin, and Oscar Cabezón

Author affiliations: Centre de Recerca en Sanitat Animal, Barcelona, Spain (X. Fernández-Aguilar, J. Pujols, R. Rosell, J. Segalés, O. Cabezón); Universitat Autònoma de Barcelona, Barcelona (X. Fernández-Aguilar, R. Velarde, J.R. López-Olvera, I. Marco, M. Pumarola, J. Segalés, S. Lavin, O. Cabezón); Institut de Recerca i Tecnologia Agroalimentàries, Barcelona (J. Pujols); and Generalitat de Catalunya Departament d’Agricultura, Barcelona (R. Rosell)

DOI: http://dx.doi.org/10.3201/eid2006.130961

References


Address for correspondence: Oscar Cabezón, Servei d’Ecopatologia de Fauna Salvatge, Wildlife Diseases Research Group, Departament de Medicina i Cirurgia Animals, Edifici V. Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain; email: oscar.cabezón@cresa.uab.cat

Find emerging infectious disease information on

Facebook

http://www.facebook.com
nih.gov/Blast.cgi) after filtering reads as described (6). The taxonomy of the aligned reads was parsed by using the MEGAN4 MetaGenome Analyzer (7).

On the basis of the nonredundant protein alignment results, we identified 38 sequence reads that were classified as Henipavirus spp. However, the sequences shared low nucleotide and amino acid identities with known henipaviruses. The reads were then used for reads-based PCR to identify the partial genome of this virus. The remaining genomic sequences were determined by using genome walking. The 5′ and 3′ untranslated regions were obtained by nested PCR with combined specific primers and henipavirus-specific degenerate primers as described (8), and the exact sequences of the 5′ and 3′ genome termini were determined by rapid amplification of cDNA ends.

MojV shares similar features with known henipaviruses. The virus has a genome length of 18,404 nt (submitted to GenBank under accession no. KF278639), and has the characteristic henipavirus gene order: 3′-nucleocapsid (N) protein (539 aa); P/V/W/C proteins (phosphoprotein; 694 aa, 464 aa, 434 aa, 177 aa); matrix protein (340 aa); fusion protein (545 aa); attachment glycoprotein (625 aa); and large (L) protein (2,277 aa)-5′ (online Technical Appendix Figure, wwwnc.cdc.gov/EID/article/20/6/13-1022-Techapp1.pdf). The predicted conserved sequences between genes showed features characteristic of henipaviruses (online Technical Appendix Table). The central domain of the N protein contains 3 conserved motifs common in all paramyxoviruses: QXW [I/V] X,K [A/C] XT, FX[T/IV][R/K][Φ]G[A]L/I/V XT, and FX₄YPX₂ΦSΦAMG, where Φ

Figure. Phylogenetic trees based on the nucleocapsid proteins (A) and large proteins (B) of Mojiang paramyxovirus (MojV) and other previously reported paramyxoviruses. Bold font indicates MojV and Henipavirus spp. Scale bars indicate nucleotide substitutions per site.
is an aromatic amino acid (9). In addition, the RNA editing site (AAAA GG) for the processing of V and W proteins were conserved in the phosphoprotein gene sequences of Hendra virus and Nipah virus was found, and 6 conserved domains within the L proteins of the order Mononegavirales (8) were found in the MojV L protein.

The nucleotide identities of predicted MojV genes exhibited similarity with genes of known henipaviruses: N (53.0%-57.0% identity), phosphoprotein (37.8%-43.0% identity), matrix (59.5%-63.4% identity), fusion (47.5%-51.4% identity), attachment glycoprotein (36.6%-41.8% identity), and L (55.9%-58.6% identity) genes. Using MEGAS5 (10), we used the phylogenetic trees based on N and L proteins to describe the evolutionary relationships between MojV and other henipaviruses, we confirmed that MojV could be classified as a new species closely related to Henipavirus spp.

Specific nested primer sets targeting the L gene of MojV were designed to separately re-evaluate the 34 anal swab samples and some tissue samples. Of 9 anal swab samples from the R. flavipectus rats, 3 were positive for MojV, and a tissue sample from 1 of the 3 MojV-positive rats was also MojV positive (tissue was not collected from the other 2 rats). All 20 samples from R. ferrumequinum bats and all 5 samples from C. dracula musk shrews were MojV negative. The 3 MojV-positive anal swab samples were cultured in Vero E6, Hep2, and BHK21 cells for virus isolation; no cytopathic effects or viral replication was detected after 2 blind subculture passages.

Our study showed the presence of a rodent-origin, henipa-like virus, MojV, in China. R. flavipectus rats are the natural reservoir of MojV. This finding and its context indicate that Henipavirus spp. viruses might infect more mammalian hosts than previously thought and that bats may not be the only hosts of henipaviruses.

This work was supported by a National S&T Major Project (China Mega-Project for Infectious Disease; grant no. 2011ZX10004-001) from the People’s Republic of China, and by a Basic Research and Operating Expenses grant (no. 2013IPB301) from the Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College.

Zhiqiang Wu,1 Li Yang,1 Fan Yang,1 Xianwen Ren,1 Jinyong Jiang, Jie Dong, Lilian Sun, Yafang Zhu, Hongnong Zhou, and Qi Jin
Author affiliations: Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z. Wu, L. Yang, F. Yang, X. Ren, J. Dong, L. Sun, Y. Zhu, Q. Jin); Institute of Pathogen Biology, Beijing (Z. Wu, L. Yang, F. Yang, X. Ren, J. Dong, L. Sun, Y. Zhu, Q. Jin); and Yunnan Institute of Parasitic Diseases, Puer, China (J. Jiang, H. Zhou)

DOI: http://dx.doi.org/10.3201/eid2006.131022

References

Address for correspondence: Qi Jin, No. 6 Rongjing East St, Yizhuang, Beijing, 100176, China; email: zdysys@vip.sina.com

The Public Health Image Library (PHIL)

The Public Health Image Library (PHIL), Centers for Disease Control and Prevention, contains thousands of public health-related images, including high-resolution (print quality) photographs, illustrations, and videos. PHIL collections illustrate current events and articles, supply visual content for health promotion brochures, document the effects of disease, and enhance instructional media. PHIL Images, accessible to PC and Macintosh users, are in the public domain and available without charge.

Visit PHIL at http://phil.cdc.gov/phil
Technical Appendix

Figure. Genomic organization of Mojiang paramyxovirus. N, nucleocapsid protein; L, large protein; P/V/W/C, phosphoprotein; M, matrix protein; F, fusion protein; G, attachment glycoprotein.

Table. Conserved nucleotide sequences for the gene start, intergenic region, and gene stop of Mojiang paramyxovirus and henipaviruses*

<table>
<thead>
<tr>
<th>Variable</th>
<th>Gene stop</th>
<th>Intergenic region</th>
<th>Gene start</th>
</tr>
</thead>
<tbody>
<tr>
<td>/N</td>
<td></td>
<td>CTT</td>
<td>AGGATTCAGG</td>
</tr>
<tr>
<td>N/P</td>
<td>TTAAACAAAA</td>
<td>CTT</td>
<td>AGGATCCAAG</td>
</tr>
<tr>
<td>P/M</td>
<td>TCATAAAAAA</td>
<td>CTT</td>
<td>AGGAGTCAAG</td>
</tr>
<tr>
<td>M/F</td>
<td>ATATAAAAAA</td>
<td>CTT</td>
<td>AGGTGTCAGG</td>
</tr>
<tr>
<td>F/G</td>
<td>TTAATAAAAA</td>
<td>CTT</td>
<td>AGGAGTCAGG</td>
</tr>
<tr>
<td>G/L</td>
<td>TTACAAAAAA</td>
<td>CTT</td>
<td>AGGATTCACG</td>
</tr>
<tr>
<td>Consensus sequences for henipaviruses</td>
<td>TWAHRAAAAA</td>
<td>CTT</td>
<td>AGGANMCARG</td>
</tr>
</tbody>
</table>

*N, nucleocapsid; P, phosphoprotein (P/V/W/C); M, matrix; F, fusion; G, glycoprotein; L, large protein.