including New York (8 cases), Massachusetts, Pennsylvania, Connecticut, and Rhode Island (3 cases each) (1, 2); single cases have been identified in Michigan, Ohio, North Carolina, Oklahoma, New Jersey, Louisiana, Florida, and California (1, 2). Four other cases have been reported: 3 in South America (Colombia, Brazil, Peru) (3, 7, 8) and 1 in Africa (Ethiopia) (9). Only a few Brugia species have been identified, including B. leporis, found in rabbits in the northeastern United States (1, 10); B. beaveri, found in raccoons and bobcats in the southern United States; and B. guyanensis, found in coatimundi and other vertebrates in South America (8). Definitive identification with molecular techniques will better identify causative species and help clarify many of the ecologic and epidemiologic questions surrounding zoonotic filarial infections.

This work was supported by the Instituto de Salud Carlos III, Fondo de Investigaciones Sanitarias, through the sixth national plan of research plus development plus innovation (2008–2011), Instituto de Salud Carlos III -General Sub-Direction of Networks and Centers for Collaborative Research (Red Temática de Investigación Cooperativa—Red de Investigación Cooperativa en Enfermedades Tropicales, grant no. RD12/0018/003).

Alberto Enrique Paniz-Mondolfi, Teresa Gárate, Christine Stavropoulos, Wen Fan, Luis Miguel González, Mark Eberhard, Fred Kimmelstiel, and Emilia Mia Sordillo

Author affiliations: Yale University School of Medicine, New Haven, Connecticut, USA (A.E. Paniz-Mondolfi); St. Luke’s-Roosevelt Hospital Center of Columbia University College of Physicians and Surgeons, New York, New York, USA (A.E. Paniz-Mondolfi, C. Stavropoulos, W. Fan, F. Kimmelstiel, E.M. Sordillo); Servicio Autonomo de Biomedicina/Instituto Venezolano de los Seguros Sociales, Caracas, Venezuela (A. Paniz Mondolfi); Instituto de Salud Carlos III, Madrid, Spain (T. Gárate, L.M. González); and Centers for Disease Control and Prevention, Atlanta, Georgia, USA (M. Eberhard)

DOI: http://dx.doi.org/10.3201/eid2007.131654

References

Search past issues of EID at wwwnc.cdc.gov/eid
Flucnazol MICs were high for all isolates (Table). Isolates 209 and 224 showed reduced voriconazole susceptibility with MICs of 1 μg/mL and 2 μg/mL, respectively, which is above the epidemiologic cutoff value for 11 Candida species (10). Isolates were susceptible to amphotericin B and echinocandins at low MICs at low MICs in antifungal susceptibility testing of Candida albicans. Clini-


7. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phyloge-


Address for correspondence: Nelesh P. Govender, National Institute for Communicable Diseases–Centre for Opportunistic, Tropical and Hospital Infections, Private Bag X4, Sandringham, 2132, South Africa; email: neleshg@nicd.ac.za

Sign up for Twitter and find the latest information about emerging infectious diseases from the EID journal.

Table. Identification and antifungal susceptibility results of 4 Candida auris isolates from 4 male patients with candidemia, South Africa, October 2012–October 2013*

<table>
<thead>
<tr>
<th>Isolate ID</th>
<th>Patient age, y</th>
<th>Hospital unit</th>
<th>Vitek-2 YST†</th>
<th>API 20C AUX†</th>
<th>DNA sequence analysis‡</th>
<th>MIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>208</td>
<td>85</td>
<td>High-care</td>
<td>C. haemulonii</td>
<td>Rhodotorula glutinis</td>
<td>R. glutinis</td>
<td>C. auris</td>
</tr>
<tr>
<td>209</td>
<td>60</td>
<td>Medical ICU</td>
<td>C. haemulonii</td>
<td>R. glutinis</td>
<td>C. auris</td>
<td>0.5</td>
</tr>
<tr>
<td>224</td>
<td>73</td>
<td>Burn ICU</td>
<td>C. haemulonii</td>
<td>R. glutinis</td>
<td>C. auris</td>
<td>1</td>
</tr>
<tr>
<td>293</td>
<td>27</td>
<td>Trauma ICU</td>
<td>C. haemulonii</td>
<td>R. glutinis</td>
<td>C. auris</td>
<td>1</td>
</tr>
</tbody>
</table>

‡Sequence data for the 4 isolates have been deposited in GenBank, accession nos. KJ1236762–KJ1236765 and KJ126758–KJ126761 for the internal transcribed spacer and D1/D2 regions, respectively.

Author affiliations: National Institute for Communicable Diseases, Johannesburg, South Africa (R.E. Magobo, N.P. Govender); National Health Laboratory Service, Johannesburg, South Africa (S. Seetharam); University of the Witwatersrand, Johannesburg, South Africa (N.P. Govender); and Ampath National Reference Laboratory, Pretoria, South Africa (C. Corcoran)

DOJ: http://dx.doi.org/10.3201/eid2007.131765

References


Candida auris–Associated Candidemia, South Africa

Technical Appendix

Technical Appendix Figure. Phylogenetic relatedness of internal transcribed spacer region of the ribosomal RNA gene of Candida auris with closely related Candida species. Scale bar indicates nucleotide substitutions per site.
<table>
<thead>
<tr>
<th>Isolate ID</th>
<th>Risk factor</th>
<th>Antifungal treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>224</td>
<td>Referred to a public-sector specialist burn unit from a private-sector hospital 40% third-degree burns with inhalational injury; required débridement, skin grafts, and tracheostomy In situ: central venous catheter/s, arterial line, urinary catheter Mechanically ventilated Multiple episodes of sepsis requiring broad-spectrum antimicrobial drugs, including β-lactams, colistin, linezolid, and vancomycin Renal failure requiring hemodialysis</td>
<td>Amphotericin B deoxycholate (received only 1 dose)</td>
<td>Died 35 d after admission to hospital</td>
</tr>
</tbody>
</table>