
To the Editor: Nontuberculous mycobacteria (NTM), defined as members of Mycobacterium species other than those in the M. tuberculosis complex or M. leprae, are mostly considered to be opportunistic pathogens (1). However, many NTM can and do cause disease in immune-competent hosts. Pulmonary infection by NTM can be a source of diagnostic uncertainty, especially in locations such as in China, where acid-fast staining of sputum samples is the mainstay of diagnosis for tuberculosis (2). NTM are also relatively resistant to many of the first- and second-line drugs used to treat tuberculosis, thus making accurate diagnosis and drug-susceptibility testing critical to clinical management of NTM infections (3). The medical and public health communities have been concerned about increasing prevalence of NTM infection in China, and 2 recent surveys, 1 from Shanghai and another from a rural population in Shandong Province, gave somewhat conflicting reports of the prevalence of these infections (4,5). We therefore decided to conduct a survey of NTM isolates in Beijing from the National Tuberculosis Clinical Laboratory of the Beijing Chest Hospital. We also tested isolates from specimens collected in this laboratory against an extended drug susceptibility panel to determine which agents (streptomycin, capreomycin, amikacin, protonamide, para- amino salicylic acid, ofloxacin, and levofloxacin) (Table). If a patient had multiple positive NTM isolates, DST was performed on the last isolate. In agreement with other studies (4,5), ethambutol remained the most useful agent against NTM; its overall resistance rate among isolates tested was 42%. Ranking of second or third agents, however, should be guided by species identification and DST. For example, levofloxacin appears to be a good choice for M. kanssii, M. gordonae, or M. fortuitum infections (overall resistance rate 22%), but a poor choice against M. avium complex infections (overall resistance rate 95%). The second most prevalent species in our study (28% of isolates), M. abscessus, was resistant to the test drugs in >90% of cases, highlighting the difficulties associated with treatment for some NTM infections.

Our study suggests that there has been no substantial increase in the prevalence of NTM in respiratory isolates from persons in northern China. Most of the isolates show substantial and extensive drug resistance, providing major therapeutic challenges for clinicians, especially if patients are treated as they would be for drug susceptible tuberculosis. To guide therapy, both species-level identification and DST of NTM isolates should be performed. Our data suggest that testing the efficacy of some second-line agents, in particular, fluoroquinolones, may be beneficial in identifying further options for therapy. Drug susceptibility testing (DST) was performed by the proportion method according to the WHO Guidelines for the Programmatic Management of Drug-resistant Tuberculosis, 2011 Update (http://whqlibdoc.who.int/publications/2011/9789241501583_eng.pdf). We tested 3 first-line anti-tuberculosis drugs (rifampin, isoniazid, and ethambutol) and 7 second-line agents (streptomycin, capreomycin, amikacin, protonamide, para-amino salicylic acid, ofloxacin, and levofloxacin).
Table. Species and drug-resistance profiles of 95 nontuberculous mycobacteria strains, northern China, 2008–2011*

<table>
<thead>
<tr>
<th>Drugs</th>
<th>M. intracellulare</th>
<th>M. abscessus</th>
<th>M. fortuitum</th>
<th>M. gordonae</th>
<th>M. kansassi</th>
<th>M. avium</th>
<th>M. parascrofulaceum</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>INH</td>
<td>37 (97.37)</td>
<td>28 (100)</td>
<td>7 (87.5)</td>
<td>6 (75)</td>
<td>3 (42.86)</td>
<td>5 (100)</td>
<td>1 (100)</td>
<td>87 (91.58)</td>
</tr>
<tr>
<td>RIF</td>
<td>34 (89.47)</td>
<td>28 (100)</td>
<td>7 (87.5)</td>
<td>2 (25)</td>
<td>0</td>
<td>5 (100)</td>
<td>1 (100)</td>
<td>77 (81.05)</td>
</tr>
<tr>
<td>EMB</td>
<td>4 (10.53)</td>
<td>26 (92.86)</td>
<td>7 (87.5)</td>
<td>1 (12.5)</td>
<td>0</td>
<td>2 (40)</td>
<td>0</td>
<td>40 (42.11)</td>
</tr>
<tr>
<td>SM</td>
<td>38 (100)</td>
<td>28 (100)</td>
<td>7 (87.5)</td>
<td>4 (50)</td>
<td>6 (85.71)</td>
<td>5 (100)</td>
<td>1 (100)</td>
<td>89 (93.68)</td>
</tr>
<tr>
<td>CPM</td>
<td>31 (81.58)</td>
<td>26 (92.86)</td>
<td>4 (50)</td>
<td>1 (12.5)</td>
<td>2 (28.57)</td>
<td>3 (60)</td>
<td>1 (100)</td>
<td>68 (71.58)</td>
</tr>
<tr>
<td>AK</td>
<td>31 (81.58)</td>
<td>25 (89.29)</td>
<td>4 (50)</td>
<td>1 (12.5)</td>
<td>1 (14.29)</td>
<td>4 (80)</td>
<td>0</td>
<td>66 (69.43)</td>
</tr>
<tr>
<td>PTO</td>
<td>25 (65.79)</td>
<td>27 (96.43)</td>
<td>6 (75)</td>
<td>4 (50)</td>
<td>0</td>
<td>4 (80)</td>
<td>1 (100)</td>
<td>67 (70.53)</td>
</tr>
<tr>
<td>PAS</td>
<td>38 (100)</td>
<td>28 (100)</td>
<td>7 (87.5)</td>
<td>8 (100)</td>
<td>7 (100)</td>
<td>4 (80)</td>
<td>1 (100)</td>
<td>93 (97.89)</td>
</tr>
<tr>
<td>OFLX</td>
<td>38 (100)</td>
<td>28 (100)</td>
<td>3 (37.5)</td>
<td>3 (37.5)</td>
<td>1 (14.29)</td>
<td>5 (100)</td>
<td>1 (100)</td>
<td>79 (83.16)</td>
</tr>
<tr>
<td>LVFX</td>
<td>36 (94.74)</td>
<td>28 (100)</td>
<td>3 (37.5)</td>
<td>2 (25)</td>
<td>0</td>
<td>5 (100)</td>
<td>1 (100)</td>
<td>75 (78.95)</td>
</tr>
</tbody>
</table>

Total 38 (40) 28 (29.47) 8 (8.42) 8 (8.42) 7 (7.37) 5 (5.26) 1 (1.05) 95 (100)

*INH, isoniazid; RIF, rifampin; EMB, ethambutol; SM, streptomycin; CPM, capreomycin; AK, amikacin; PTO, protonamide; PAS, para-aminosalicylic acid; OFLX, ofloxacin; LVFX, levofloxacin.

Acknowledgments
We thank all participants in this study.

This work was supported by the research funding from Infectious Diseases Special Project, Ministry of Health of China (2012ZX10003002).

The NTM isolates used in this project were originated from the Beijing Bio-Bank of clinical resources on Tuberculosis (D09050704640000), Beijing Chest Hospital.

Xiaobo Wang,† Hao Li,† Guanglu Jiang, Liping Zhao, Yifeng Ma, Babak Javid, and Hairong Huang

Author affiliations: Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China (X. Wang, G. Jiang, L. Zhao, Y. Ma, H. Huang); Tsinghua University, Beijing (H. Li, B. Javid); and Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Disease, Hangzhou, China (B. Javid)

DOI: http://dx.doi.org/10.3201/eid2007.131801

References

10. These authors contributed equally to this article.

Address for correspondence: Hairong Huang, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing 101100, China; email: hairong.huangcn@gmail.com

Emerging Infectious Diseases Journal Podcasts

Zombies—A Pop Culture Resource for Public Health Awareness

Reginald Tucker reads an abridged version of the Emerging Infectious Diseases Another Dimension, Zombies—A Pop Culture Resource for Public Health Awareness.

http://www2c.cdc.gov/podcasts/player.asp?f=8628220