Highly Pathogenic Avian Influenza A(H5N8) Virus from Waterfowl, South Korea, 2014

To the Editor: To date, 18 hemagglutinin (HA) subtypes and 11 neuraminidase (NA) subtypes have been identified in influenza A viruses (1–4). Influenza A viruses containing HA subtypes 1–16 circulate in aquatic birds (1,2), whereas those harboring HA subtypes 17 and 18 are found in bats (3,4).

On January 18, 2014, the government of South Korea reported an outbreak of highly pathogenic avian influenza A(H5N8) virus in breeding ducks in the southern part of Jeollabuk-Do Province (5). More than 12 million poultry have since been culled, but the spread of the virus continues in duck and chicken farms. We report the genetic characterization of this virus.

On February 15, 2014, a total of 200 fecal samples were collected from waterfowl in the Punge River in Chungnam Province, which is geographically close to Jeollabuk-Do Province. All samples were inoculated into hens’ eggs, and influenza A viruses were confirmed by PCR by using influenza A–specific nucleoprotein (NP) primers. We obtained 1 isolate, A/waterfowl/Korea/S005/2014 (H5N8), and sequenced the full regions of all 8 genes as described (6). These sequences were deposited into GenBank under accession nos. KJ511809–KJ511816.

We conducted a BLAST search (http://blast.ncbi.nlm.nih.gov/Blast.cgi, http://platform.gisaid.org/epi3/frontend#4ead5c) to identify the closest gene sequences to those of A/waterfowl/Korea/S005/2014 (H5N8) (Table). Sequences for polymerase basic (PB) 2 (99% homology), HA (97% homology), and NP (99% homology) genes were closely related to those of A/wild duck/Shandong/

References


9. Cohn AC, MacNeil JR, Clark TA, Ortega-Rendón R, von Gottberg A, et al. Phylogenetic analysis of A/waterfowl/Korea/S005/2014 (H5N8) isolated from a duck farm in South Korea (GenBank accession no. KJ413839.1–KJ413846.1). ASParagin acid was found in M1 at position 31 and alanine (A) residue, which was previously found to be related to enhanced binding to the human influenza receptor (7). The connecting peptide of HA contained an insertion of 4 basic amino acids (arginine-arginine-arginine-lysine), which is the same as in the HA of A/duck/Korea/Buan2/2014 (H5N8), an isolate from a duck farm in South Korea (GenBank accession no. KJ511809–KJ511816).
Korea/Buan2/2014 (H5N8) isolate that was obtained from a duck farm, it is likely that A/waterfowl/Korea/S005/2014 (H5N8) originated from infected waterfowl that had visited poultry on an infected farm (online Technical Appendix Figure 1). Our laboratory has studied the feces of wild birds in Chungnam Province since 2009, surveying >20,000 fecal samples from wild birds in this area each year, but we had not previously isolated avian influenza A(H5N8) virus from any samples.

The genetic analysis of the A/waterfowl/Korea/S005/2014 (H5N8) isolate indicates that this novel strain may have been created by the reassembly of PB2, HA, and NP segments from H5N1-like avian influenza virus; PB1, PA, M, and NS segments from H4N2-like avian influenza virus; and NA segments from H5N8-like avian influenza virus (online Technical Appendix Figure 2). Most genes of the virus we isolated are related to those of avian influenza viruses isolated in China, but the HA gene of A/waterfowl/Korea/S005/2014 (H5N8) showed only 97% homology to the closest HA gene in GenBank, which indicates that this gene may have been created in poultry in South Korea. To our knowledge, no outbreak of this virus in poultry farms in China has been reported, and we found no previous reports in the literature that migratory birds could carry the virus. Taken together, our data suggest that A/waterfowl/Korea/S005/2014 (H5N8) may have been reassorted in a duck farm in South Korea.

Acknowledgments

We thank the scientific editor from Editage who edited this manuscript.

This work was funded by a Basic Science Research Program through National Research Foundation of Korea from the Ministry of Education, Science and Technology (2012R1A2A2A01002533).

Keun Bon Ku,1 Eun Hye Park,1 Jung Yum,1 Ji An Kim, Seung Kyoo Oh, and Sang Heui Seo

Author affiliation: Chungnam National University College of Veterinary Medicine, Daejeon, South Korea

DOI: http://dx.doi.org/10.3201/eid2009.140390

References


Address for correspondence: Sang Heui Seo, Laboratory of Influenza Research, College of Veterinary Medicine, Institute of Influenza Virus, Chungnam National University, 220 Gung Dong, YuseongGu, Daejeon 305-764, South Korea; email: seos@cnu.ac.kr

The Public Health Image Library (PHIL) http://phil.cdc.gov/phil