Sixty percent of emerging viruses have a zoonotic origin, making transmission from animals a major threat to public health. Prompt identification and analysis of these pathogens are indispensable to taking action toward prevention and protection of the affected population. We quantifiably compared classical and modern approaches of virus purification and enrichment in theory and experiments. Eventually, we established an unbiased protocol for detection of known and novel emerging viruses from organ tissues (tissue-based universal virus detection for viral metagenomics [TUViD-VM]). The final TUViD-VM protocol was extensively validated by using real-time PCR and next-generation sequencing. We could increase the amount of detectable virus nucleic acids and improved the detection of viruses ≤75,000-fold compared with other tested approaches. This TUViD-VM protocol can be used in metagenomic and virome studies to increase the likelihood of detecting viruses from any biological source.

Viruses responsible for disease outbreaks in humans naturally emerge either from the human population or as zoonoses by transmission from animal hosts (1). Viruses can also emerge unnaturally, either directly (e.g., bioterrorist attacks) or accidentally (e.g., laboratory infections). Despite these possibilities of virus emergence, 60% of emerging viruses have a zoonotic origin, thus highlighting transmission from animals to humans as a major threat to public health (2). Whenever viruses emerge, prompt identification of the agent and implementation of control measures to contain the outbreak are required.

Currently, various next-generation sequencing (NGS) approaches provide solutions for detection of purified and concentrated viruses (i.e., from cell culture). However, for clinical specimens, such as blood, other fluids, or infected organ tissues, successful detection of viruses is less likely because virus-to-host genome ratios are insufficient (3–6). Use of tissues from persons with suspected infections for virus detection enables elucidation of infection directly at the site of viral replication. Although detecting viruses directly from infected organ tissue provides obvious and valuable advantages, reliable purification of viruses directly from tissues still remains a challenge.

In this study, we quantifiably and extensively compared classical and modern experimental approaches for virus purification and enrichment to finalize a protocol for unbiased detection of emerging viruses directly from organ tissues (tissue-based unbiased virus detection for viral metagenomics [TUViD-VM]) for an increased signal-to-noise ratio (ratio of virus genome to host genome) in virus detection. Use of this approach will reduce the amount of host nucleic acids required and save money and time in preparation of samples for NGS and the subsequent bioinformatic analysis.

Materials and Methods
We first describe how the protocol was developed and evaluated. We then describe the final virus purification and enrichment TUViD-VM protocol for metagenomic deep sequencing for nucleic acid from organ tissue (Figure 1).

Protocol Development

Ethics Statement
All procedures regarding the marmoset used in this study were performed in accordance with the European Association of Zoos and Aquaria Husbandry Guidelines for Callitrichidae, 2nd ed., 2010 (http://www.marmosetcare.com/downloads/EAZA_HusbandryGuidelines.pdf), which promotes the highest possible standard for husbandry of zoo animals. The marmoset was kept in Zoo Heidelberg (Heidelberg, Germany) with other marmosets in a species-appropriate environment enriched with material for occupation and activity and adequate feeding regimens 3 times a day. The marmoset that was euthanized did not have any additional signs of illness or infection. The production of specific pathogen–free eggs (VALO BioMedia GmbH, Osterholz-Scharmbeck, Germany) was performed in

Author affiliation: Robert Koch Institute, Berlin, Germany

DOI: http://dx.doi.org/10.3201/eid2101.140766

1Preliminary results of this study were presented at the Biodefense and Emerging Infectious Diseases Meeting, January 29, 2014, Washington, DC, USA.
accordance with guidelines of the European Pharmacopoeia (EP7.0.5.2.2) and the US Department of Agriculture Veterinary Services (Memorandum 800.65).

All procedures regarding embryonated chicken eggs were based on German Animal Protection Laws. For infection, fertilized chicken eggs at embryonation day 11 were inoculated with virus into the allantois sack or onto the chorioallantoic membrane. Development of embryos was terminated at day 17 of embryonation by cooling the eggs overnight at 4°C. No further specific approval is needed for experiments on embryonated avians before time of hatching. However, additional approval from the internal ethics advisory board of the Robert Koch Institute was obtained and is available on request.

Study Design
To compare classical and modern experimental approaches of virus purification and enrichment, we designed a tissue model for internal organs of chicken, each infected with 1 of 4 viruses (poxvirus [vaccinia virus], reovirus [orthoreovirus], orthomyxovirus [influenza virus], and paramyxovirus [Sendai virus]) at low concentrations (Table 1; Table 2, http://wwwnc.cdc.gov/EID/article/21/1/14-0766-T2.htm; online Technical Appendix, http://wwwnc.cdc.gov/EID/article/21/1/14-0766-Techapp1.pdf). Viruses were chosen on the basis of their role in emerging zoonotic diseases and their morphologic and molecular heterogeneity to obtain results for a broad range of viruses (Table 3).

Model Tissue and Protocol Development
To establish a model tissue, we inoculated specific pathogen-free embryonated chicken eggs with 1 of the prechosen viruses at different concentrations. A detailed description of egg infection and preparation of the model tissue is shown in the online Technical Appendix. Reovirus (T3/Bat/Germany/342/08) (11) was chosen to represent a nonenveloped virus, orthomyxovirus (influenza A PR/8/1934) and paramyxovirus (Sendai virus) were chosen to represent enveloped viruses with an RNA genome, and poxvirus (vaccinia virus) was chosen to represent an enveloped virus with a DNA genome (Table 3). Viruses in this study were selected to optimize detection of viral zoonotic emerging diseases and possible virus bioterrorism agents.

To validate the model tissue homogeneity, we selected every ninth sample for simultaneous RNA/DNA extraction and determined copy numbers for all 4 viruses and the galTBP gene (Figure 2). Samples showed an even Gaussian distribution of virus nucleic acids per aliquot and were considered suitable for subsequent experiments.

To establish a protocol for the purification and detection of unknown viruses from animal tissue, we tested different purification techniques and their combinations, including mechanical, enzymatic, and molecular biological methods; the main aim was to eliminate as much host DNA/RNA and maintain as much virus RNA/DNA as possible to optimize random PCR amplification of unknown viruses. The novel established protocol was tested to detect any virus from lung tissue derived from a New World monkey (marmoset), which had to be euthanized because of the unknown disease-causing agent.

We compared different techniques of virus purification, enrichment, and amplification (detailed description of methods compared is shown in the online Technical Appendix). In addition, complex purification techniques (digestion and ultracentrifugation) were compared by conducting experiments that had specific control factors (e.g., ultracentrifugation with different concentrations of sucrose, time and speed) (12). Organization of combinations of different control factors and their variable factors (e.g., concentration levels, duration or speed in orthogonal assays) enables conducting a minimal number of experiments. On the basis of results of all purification techniques, we developed a combined protocol to provide the maximized yield of virus RNA/DNA after purification.

Validation and Analysis of Methods Compared
All compared methods were analyzed simultaneously. Because evaluation of sample quality was ongoing, to exclude any extraction bias, an additional unprocessed control aliquot was extracted and measured with every batch. All results of 1 extraction were rigorously compared with a related control aliquot to normalize any
variations caused by extraction, cDNA, and quantitative PCR (qPCR) performance.

Table 1. Comparison of methods used to develop a protocol for metagenomic virus detection in infectious disease settings*

<table>
<thead>
<tr>
<th>Purpose, method and supplier</th>
<th>Score†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viruses release/homogenization</td>
<td></td>
</tr>
<tr>
<td>Ultrasonic (Sonopuls; Bandelin Electronic, Berlin, Germany)</td>
<td>+2</td>
</tr>
<tr>
<td>Dounce homogenizer (Kleinfeld Labortechnik, Gehrden, Germany)</td>
<td>+1</td>
</tr>
<tr>
<td>Qiashredder (QIAGEN, Hilden, Germany)</td>
<td>0</td>
</tr>
<tr>
<td>Trypsin (Life Technologies, Darmstadt, Germany)</td>
<td>+3</td>
</tr>
<tr>
<td>FastPrep Homogenizer (MP Biomedicals, Strasbourg, France) (longer homogenization time)</td>
<td>+4</td>
</tr>
<tr>
<td>Enrichment of virus particles</td>
<td></td>
</tr>
<tr>
<td>Filtration 0.2-µm filter (Merck-Millipore, Temecula, CA, USA)</td>
<td>+4</td>
</tr>
<tr>
<td>Filtration 0.45-µm filter (Merck-Millipore)</td>
<td>−2</td>
</tr>
<tr>
<td>Fractionated filtration</td>
<td>−1</td>
</tr>
<tr>
<td>Durapore polyvinylidene fluoride filter tubes (Merck-Millipore)</td>
<td>+2</td>
</tr>
<tr>
<td>With or without clearing centrifugation</td>
<td>+3</td>
</tr>
<tr>
<td>Taguchi-optimized centrifugation: 20% sucrose cushion overlaying 80% sucrose cushion and second clearing</td>
<td>+4</td>
</tr>
<tr>
<td>PEG-It virus precipitation (System Biosciences, Mountain View, CA, USA)</td>
<td>+1</td>
</tr>
<tr>
<td>InRichment Virus Reagent Kit I (Analytik Jena AC, Jena, Germany)</td>
<td>−1</td>
</tr>
<tr>
<td>Digestion/removal of host nucleotides</td>
<td></td>
</tr>
<tr>
<td>Turbo DNA-free (Ambion, Darmstadt, Germany) 30 min at 37°C with centrifugation</td>
<td>+4</td>
</tr>
<tr>
<td>RiboMinus Eukaryote Kit (Invitrogen Life Technologies, Grand Island, NY, USA)</td>
<td>+1</td>
</tr>
<tr>
<td>Nucleotide extraction</td>
<td></td>
</tr>
<tr>
<td>QIAamp UltraSens Virus Kit (QIAGEN)</td>
<td>+2</td>
</tr>
<tr>
<td>QIAamp Viral RNA Mini Kit</td>
<td>+2</td>
</tr>
<tr>
<td>PureLink Viral RNA/DNA (Invitrogen Life Technologies)</td>
<td>+1</td>
</tr>
<tr>
<td>QIAamp MinElute Virus Spin Kit (QIAGEN)</td>
<td>−1</td>
</tr>
<tr>
<td>RTP DNA/RNA Virus Mini Kit (Invitek, Berlin, Germany)</td>
<td>−2</td>
</tr>
<tr>
<td>RTP DNA/RNA Virus Ultra Sense (Invitek)</td>
<td>0</td>
</tr>
<tr>
<td>NucleoSpin RNA II (Macherey Nagel, Dueren, Germany)</td>
<td>0</td>
</tr>
<tr>
<td>NucleoSpin DNA (Macherey Nagel)</td>
<td>+2</td>
</tr>
<tr>
<td>Phenol chloroform extraction (Carl Roth GmbH, Karlsruhe, Germany)</td>
<td>+3</td>
</tr>
<tr>
<td>TRizol LS reagent (Life Technologies)</td>
<td>+4</td>
</tr>
<tr>
<td>Amplification</td>
<td></td>
</tr>
<tr>
<td>N12 random primer</td>
<td>+3</td>
</tr>
<tr>
<td>N10 random primer</td>
<td>+2</td>
</tr>
<tr>
<td>WTA‡</td>
<td>+3</td>
</tr>
<tr>
<td>WGA</td>
<td>0</td>
</tr>
<tr>
<td>K primer‡ (7)</td>
<td>+3</td>
</tr>
<tr>
<td>3' locked random primer (8)</td>
<td>+1</td>
</tr>
</tbody>
</table>

*WTA, whole transcriptome amplification; WGA, whole genome amplification.

†For every relative quantification result that increased the ratio between host and virus nucleic acids, 1 point was assigned (maximum +4 points if the method led to better detectability for all 4 viruses). For every decrease, 1 point was subtracted (minimum −4 points).

‡WTA and K primer showed similar results. However, when we considered the lower costs and ease of handling of K primers, we used K primers for this protocol.

Final TUViD-VM Protocol for the Enrichment and Purification of Viruses from Organ Tissue

Tissue Homogenate

For homogenization, a small cube of tissue (0.5–1 cm³) was placed in an autoclaved screw-cap tube (Sarstedt, Hildesheim, Germany) containing 1 mL of phosphate-buffered saline (PBS) buffer and 20–30 sterile ceramic beads. Tissue was disrupted by shaking 4 times at maximum speed at intervals of 15 s by using the FastPrep-24 Instrument.
The pellet was resuspended in 245 mL of 1× digestion buffer (Turbo DNA Free Kit; Ambion, Darmstadt, Germany). A total of 5 mL of Turbo DNase (Turbo DNA Free Kit; Ambion) was added and incubated for 30 min at 37°C. The suspension was transferred to a 1.5-mL reaction tube. A total of 10 mL of stop reagent (Turbo DNA Free Kit; Ambion) was added, incubated at room temperature for 1 min, and centrifuged at 2,000 rpm for 3 min. The supernatant was transferred to another tube, and pellet was discarded. The duration of this procedure was ≈0.75 h.

Combined TRIzol LS Extraction

A total of 750 mL of TRIzol LS (Invitrogen Life Technologies, Grand Island, NY, USA) was added to ≈250 mL of supernatant from previous procedures and homogenized by pipetting up and down 10 times. The mixture was incubated for 5 min at room temperature and centrifuged at 12,000 rpm for 10 min. The supernatant was transferred to precentrifuged phase-lock gel tube (5-Prime, Hilden, Germany). A total of 200 mL of chloroform–isoamyl alcohol was added and mixed by inverting the tube vigorously. The tube was incubated for 15 min at room temperature and centrifuged at 12,000 rpm for 15 min.

Approximately 280 mL of supernatant from the phase-lock gel tube was transferred to another tube containing 1,120 mL of AVL lysis buffer without carrier RNA (Viral RNA Mini Kit; QIAGEN, Hilden, Germany). A total of 700 mL of absolute ethanol was added and mixed by pulse vortexing. The solution was transferred in 600-mL portions to a QIAamp Mini Column (QIAGEN), centrifuged 8,000 rpm for 1 min, and the filtrate was discarded. The column was placed in a new collection tube, loaded again, and centrifuged until the lysate was added to the column. A total of 500 mL of 70% (wt/vol) ethanol was added and the column was centrifuged at 8,000 rpm for 3 min.

A mixture of 10 mL of DNase and 70 µL of RDD buffer (RNase-Free DNase Set; QIAGEN) was added to the column and incubated for 15 min at room temperature, as described by the manufacturer. The column was washed.
with 500 mL of AW1 buffer, centrifuged at 8,000 rpm for 1 min, and the filtrate was discarded. The column was placed in a new tube, 500 mL of AW2 buffer was added, the tube was centrifuged at maximum speed for 3 min, and the filtrate was discarded. The column was then placed in a new tube, and the tube was centrifuged at maximum speed for 1 min to dry the column. A total of 30 mL of elution buffer was added to the column, incubated for 5 min at room temperature, and the column was centrifuged in a new 1.5-mL tube. A total of 30 mL of elution buffer was added to the column, incubated for 5 min at room temperature, and centrifuged in the same tube. RNA (≈60 mL) was chilled on ice. The duration of this procedure was ≈3 h.

Random Amplification

Single-stranded cDNA was produced by using the Reverse Transcription Reagent Kit (Applied Biosystems, Foster City, CA, USA) and adapted for a 50-mL reaction containing 30 mL of RNA, 2 mL (40 µmol/L) of K8N random primer (7), 3.2 mL (25 mmol/L) of dNTPs, 4 mL 10× buffer, 9 mL (50 mmol/L) of MgCl₂, 0.8 mL of RNase inhibitor, 0.6 mL of reverse transcriptase, and 0.4 mL of water). A total of 2 mL of K8N random primers and 3.2 mL of dNTPs were added to the 30 mL of RNA and heated at 95°C for 5 min before quenching on ice. The remaining contents of the mixture were heated at 42°C for 60 min before the enzyme was inactivated at 95°C for 10 min.

Double-stranded cDNA was produced by mixing 2 mL of K8N random primers, 3 mL of Klenow buffer (New England Biolabs, Ipswich, MA, USA), and 2 mL (2.5 mmol/L) of dNTPs with 19 mL of cDNA. The mixture was heated at 95°C for 2 min and cooled to 4°C. A total of 1.67 mL of Klenow fragment (New England Biolabs) was added and the mixture was at 37°C for 60 min. Double-stranded cDNA was purified by using the MSB Spin PCRapace Purification Kit (Invitek, Berlin, Germany) and an elution volume of 30 mL. Random amplification was performed by using the procedures reported by Stang and Korn (7). Successful random amplification (a 200–2,000-bp smear) was visualized by agarose gel electrophoresis of 10 mL of PCR product. The duration of this procedure was ≈4.5 h. Sequence information can be obtained by either cloning into sequencing vectors or by NGS.

NGS

RNA samples were fragmented by using the NEBNext Magnesium RNA Fragmentation Module (New England
Metagenomic Virus Detection in Clinical Specimens

Biolabs). RNA was purified by using RNeasy MinElute (QIAGEN). For cDNA synthesis, Superscript II and Murine RNAse inhibitor (New England Biolabs) were used. Second-strand synthesis was performed by using the NEBNext mRNA Second Strand Synthesis Module (New England Biolabs) and purified by using the MinElute PCR Purification Kit (QIAGEN).

Double-stranded cDNA, DNA, and random PCR products were quantified by using the Qubit HS dsDNA Kit (Invitrogen Life Technologies). Sequencing libraries were established by Ion Xpress Plus Fragment Library Kit (without chemical fragmentation) with indices (Ion Xpress Barcode Adapters 1–16 Kit). The sequencing library was then amplified by using an emulsion-based clonal amplification PCR in the Ion OneTouch 200 Template v2 DL Kit and enriched by using an Ion OneTouch Enrichment System. Sequencing was performed on an IonTorrent PGM in the Ion PGM Sequencing 300 Kit with the Ion 318 Chip Kit (Invitrogen Life Technologies).

NGS Data Analysis

Programs used for sequence analysis were Geneious Pro R6 (Biomatters, Auckland, New Zealand) and Bowtie2align (14). The percentage of bases (Q>20) was ≈80% before length filtering (100–1,000 nt) was applied to remove shorter reads. No additional quality trimming was applied because the quality average was sufficient for our approach. Remaining reads were mapped to the whole reference genomes (or all segments of reference genome) by using Bowtie2align for paramyxovirus (Sendai virus strain Tianjin; GenBank accession no. EF679198), reovirus (T3/Bat/Germany/342/08, 10 segments; JQ412755-JQ412764),
orthomyxovirus (influenza H1N1 strain A/Puerto Rico 8-SV14/1934, 8 segments; CY040170-CY040177), and poxvirus (vaccinia virus strain WR, no. AY243312). Coverage of genomes was calculated in weighted average for segmented genomes.

Results

Development of Protocol

Every step of the TUViD protocol (homogenization of tissue, filtration, digestion, enrichment, extraction, and random amplification) was compared with alternative approaches. Results are shown in Figures 3–7. Each approach was tested with individual samples, which were measured by using 5 PCRs specific for viruses used and host background in 2 replicates (10 reactions/sample): Results were quantified and evaluated in qPCRs for the 4 viruses and presence of host nucleic acids (online Technical Appendix; Table 4, http://wwwnc.cdc.gov/EID/article/21/1/14-0766-T4.htm; Figures 3–7). A scoring system was developed to assess the optimal combination of all 4 viruses (Table 1; Figures 3–7). A preliminary protocol was further validated and adjusted until no host nucleic acids were detectable by qPCR. This protocol maximized the amount of amplified virus nucleic acids. Subsequently, we established an unbiased protocol for the detection of known and novel viruses in infected organ tissues (TUViD-VM).

TUViD-VM Validation by NGS

The TUViD-VM protocol was validated by NGS of 4 aliquots of the model tissue. One aliquot was prepared by using the TUViD-VM protocol developed in this study, and 3 aliquots were prepared by using other approaches.
Metagenomic Virus Detection in Clinical Specimens

commonly used for unbiased virus detection (Figure 8; online Technical Appendix). We chose the Invitrogen Life Technologies platform because of its rapid run time and read length, which are crucial for diagnostic purposes. All independent runs were normalized to 1,000,000 output reads for reliable comparison (Table 5; Figure 8). NGS results confirmed the substantial increase in virus nucleic acids, as well as the decrease of host nucleic acids achieved by purification with the novel protocol. The amount of detectable virus nucleic acids was increased >1,000-fold compared with other NGS approaches (Figure 8). For example, although the best NGS approach delivered 40 reads for paramyxovirus in infected chicken tissue, the TUViD-VM protocol resulted in >60,000 reads (97.80% coverage of the complete genome) (Figure 8; Figure 9, http://wwwnc.cdc.gov/EID/article/21/1/14-0766-F9.htm; Figure 10, http://wwwnc.cdc.gov/EID/article/21/1/14-0766-F10.htm; Table 5).

To provide a proof of concept, we prepared lung tissue from the marmoset that was euthanized and had a natural respiratory infection with Sendai virus by using the 4 approaches and sequenced by using the Invitrogen Life Technologies protocol. Using the TUViD-VM protocol, we found that the amount of detectable virus in marmoset tissue increased 75,000-fold compared with that for other NGS approaches (>400,000 Sendai virus reads compared with 6), which represented 99.98% coverage of the Sendai virus genome and ≈50% of the total read output (Figures 8, 10; Table 5).

Discussion
In this study, we successfully established a purification and enrichment protocol, which shows rapid and reliable results, for detection of known and novel viruses in tissues. Likelihood of detection of RNA viruses was increased. In addition, detection of DNA incorporated in virus particles was not affected even though DNA digestion was performed. The cutoff sensitivity was 100–1,000 virus copies/mL of homogenized organ material (e.g., reovirus; Table 5). The cutoff sensitivity of compared approaches was ≥10^6 virus copies/mL. The TUViD-VM protocol (from solid tissue sampling to nucleic acid preparation for NGS) takes 12 h to complete. If one allows 16 h for NGS, the TUViD-VM protocol provides sequence data output within 28 h.

Current NGS techniques used for metagenomic approaches produce large amounts of sequence data, which might increase the likelihood of detection of diminutive amounts of virus in comparison with the host genome.
The only limiting factor seems to be the cost required for processing 1 sample and capacities for computational analysis of results. This in silico analysis should increase the signal-to-noise ratio of relevant sequences by subtracting nonrelevant sequences, such as the host genome. However, genome sequence data for mammals are limited; only 23 sequences (0.4%) for 5,487 species (18). Just 3 genome sequences are available for bats, although they are the second most abundant mammalian species (exceeded only by rodents). There are >1,100 species of bats worldwide and they are suspected vectors of pathogenic viruses (e.g., Ebola virus, Nipah virus, Hendra virus, lyssavirus, and severe acute respiratory syndrome coronavirus). Thus, it seems inefficient to invest large amounts of time, money, and effort in obtaining large datasets, only to invest even more resources to categorize them. Furthermore, quantitative comparison of the virus-enrichment strategies described enables evaluation of multiple classical and modern approaches.

The TUViD-VM described protocol increases the signal-to-noise ratio by as much as 75,000-fold than that for compared approaches and can detect virus genomes quickly in infected tissues (Figures 9, 10). Although sequencing of nucleic acid from relatively pure sources (e.g., cell culture, allantoic fluids) is well established and results in reasonable output (11,19,20), sequencing of nucleic acid clinical specimens is still challenging. Other studies reported 0.1% to <10% mammalian virus reads from clinical samples, such as tissue, guano, feces, and pharyngeal swab specimens (3,19,21–24). A method reported by Daly at al. showed promising results for detection of DNA viruses but lacked similar results for detection of RNA viruses (25).

In contrast, our protocol resulted in up to 45% mammalian RNA virus reads directly from infected organ tissue (Figure 8).

After its successful and extensive validation, we highly recommend this protocol for investigation of outbreaks with unknown viral etiologic agents in humans and animals. Furthermore, this protocol can be used in metagenomic virome studies and will be beneficial whenever library construction is necessary (i.e., molecular cloning and NGS) to increase detection likelihood for viruses from any biological source. This protocol would be particularly useful for increasing the signal-to-noise ratio in virus analysis of biological samples in which levels of background nucleic acids are high, which result in difficulties in virus detection and identification. Thus, the TUViD-VM protocol described greatly increases the likelihood of detecting viruses during outbreaks of emerging infectious diseases and in metagenomic virus detection studies.

Acknowledgments

We thank Ute Kramer for providing technical assistance, Brunhilde Schweiger for providing influenza A virus strain PR8/38, Marc Hoferer for providing infected marmoset tissues, and Ina Smith and Ursula Erikli for copyediting this article.

This study was partially supported by a scholarship from the Konrad-Adenauer-Foundation (to C.K.).

Dr. Kohl is a scientist at the Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany. Her research interests are the detection of emerging and reemerging viruses and the characterization of novel pathogens.

References

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 21, No. 1, January 2015

57

Address for correspondence: Claudia Kohl, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany; email: kohl@rzki.de

Editorial Style Guide

Protocol for Metagenomic Virus Detection in Clinical Specimens

Technical Appendix

Protocol for Unbiased Virus Detection and Increasing the Signal-to-Noise Ratios for Metagenomics

Ethics Statement

Production of specific pathogen–free eggs (VALO BioMedia GmbH, Osterholz-Scharmbeck, Germany) was performed in accordance with the guidelines of the European Pharmacopoeia (EP7.0.5.2.2.) and the US Department of Agriculture Veterinary Services (Memorandum 800.65). All procedures regarding embryonated chicken eggs were in accordance with the German Animal Protection Law. For infection, fertilized chicken eggs at embryonation day 11 were inoculated with virus into the allantois sack or onto the chorioallantoic membrane. Development of embryos was terminated at the 17th day of embryonation by cooling the eggs overnight at 4°C. No further specific approval is needed for experiments on embryonated birds before the time of hatching.

All procedures regarding the marmoset were performed in accordance with the European Association of Zoos and Aquaria Husbandry Guidelines for Callitrichidae and promoted the highest possible standard for husbandry of zoo animals. The marmoset was kept in Zoo Heidelberg (Heidelberg, Germany) with other marmosets in a species-appropriate environment enriched with material for occupation and activity and adequate feeding regimens 3 times a day. The dead marmoset did not have additional signs of illness or infection.

Infected Tissue Model/Embryonated Chicken

Reovirus, (bat mammalian orthoreovirus 342/08; T3/Bat/G/342/08) (I), influenza virus (A/PR8/1934), paramyxovirus (Sendai virus [SeV]), and poxvirus (vaccinia virus) were provided by the Robert Koch Institute (Berlin, Germany). Fertilized chicken eggs of specific pathogen–free flocks were provided by VALO BioMedia GmbH and incubated at 37°C at a relative humidity of 55%–60%. At day 12 of embryonation, 0.1 mL of serial dilutions of virus stocks
(10^{-1}–10^{-9}) plus 1 negative control (phosphate-buffered saline [PBS]) were inoculated into the allantois sac (T3/Bat/Germany/342/08, flu A PR/8/1934, and SeV) or directly onto the chorioallantoic membrane (vaccinia virus) of the embryonated chicken eggs as described (2). Eggs were incubated for 7 days after infection, and survival of the embryo was monitored by candeling. Development of the embryos was terminated at day 17 of embryonation by cooling the eggs overnight at 4°C. Organs (liver, lungs, kidney, spleen, intestine, heart, and gut) were extracted, and each organ was washed in PBS before homogenization.

A tissue cube with an average size of 8 mm^2 was homogenized in 1 mL PBS by using a FastPrep Homogenizer (MP Biomedicals, Strasbourg, France). A total of 0.2 mL of each organ was extracted by using a NucleoSpin RNA II Kit (Macherey-Nagel, Dueren, Germany) without DNA digestion before elution in 60 µL RNase-free water. cDNA synthesis was accomplished by using a TaqMan Reverse Transcription Reagents Kit (Roche Diagnostics, Mannheim, Germany) according to the manufacturer’s instructions. Specific quantitative PCRs (Table 4 in main text) were used for detection of all 4 viruses and a host-specific housekeeping gene (galTBP) (2). PCRs were performed as described (1). Extracted organ tissues were pooled according their viral load (Table 2 in main text). The pooled organ mixture was vortexed vigorously and divided into 150 aliquots (200 µL/aliquot). These aliquots were chronologically numbered from 1 to 150 and stored at –80°C until used.

Compared Methods

Homogenization

To test different homogenization strategies, 5 aliquots (200 µL/aliquot) of model tissue were processed and extracted. An additional control aliquot was extracted at the same time. Tissue was homogenized by using a FastPrep Homogenizer (MP Biomedicals) for 60 s (3 cycles for 20 s at full speed and cooled on ice between cycles) and 120 sec (2 cycles). For enzymatic digestion, 1 aliquot was incubated with 150 µL of trypsin/EDTA (GIBCO Life Technologies, Darmstadt Germany) for 15 min at 37°C. Ultrasonic homogenization was performed by using the SONOPLUS Ultrasound Homogenizer (Bandelin Electronic, Berlin, Germany) in 3 intervals of 1 min in a pulse mode of 5 × 10% with 1 impulse of 1 s divided into a 0.5-s pulse and 0.5-s pause. A Dounce Homogenizer (Kleinfeld Labortechnik, Gehrden, Germany) was used as described according to the manufacturer’s instructions. A Qiashredder (QIAGEN, Hilden, Germany) was
used according to the manufacturer’s protocol and included 1 centrifugation step at 11,000 rpm for 2 min in a bench-top centrifuge. Only extended homogenization with the FastPrep Homogenizer resulted in slightly increased virus detectability. Thus, we used the extended homogenization time in the final protocol. Results of the compared homogenization steps are shown in Figure 3 of main text.

Filtration

A total of 200 µL of homogenized tissue was filtered by using syringe filters (diameters 0.22 µm and 0.45 µm; Millipore, Cork, Ireland). Fractionated filtration was accomplished by using 0.22-µm and subsequently 0.45-µm syringe filters. Subsequently, used filters were incubated with PBS and extracted to identify possible virus residues. Tissue was also filtered by using low-binding 0.22-µm Durapore polyvinylidene fluoride membrane filter tubes (Millipore). Filtration of tissues resulted in a decreased detectability or deterioration of the ratio between virus and host DNA/RNA. Only a 0.22-µm filter or filter centrifugation tube was able to increase that ratio slightly (Figure 4 of main text).

Digestion

DNA and RNA derived from the host can be digested with different enzymes, whereas nucleic acids inside intact virus particles should be protected by the virus capsid. Enzymatic digestion of the samples with the enzymes Benzonase (Promega, Mannheim, Germany) and RNase A (QIAGEN) and the Turbo DNA-Free Kit (Ambion, Darmstadt, Germany) were tested in 9 experiments according to the procedures of Taguchi (3) and Cobb and Clarkson (4). Control factors were centrifugation before digestion (30,000 rpm in an ultracentrifuge, 1,000 rpm in a bench-top centrifuge, and no centrifugation); combination of enzymes (Benzonase/RNase/DNase, Benzonase/RNase, and only Benzonase); incubation time (30 min, 60 min, 180 min); and inactivation of the enzyme after the digestion (without inactivation, inactivation with special enzyme inhibitors, and centrifugation at 1,500 rpm). Results of quadratic loss functions are available on request. Optimal conditions for digestion of nucleic acids were calculated by using the method of Taguchi (3) (30 min at 37°C, DNase only, centrifugation, and inactivation) and subsequently confirmed in another experiment. This digestion method was included into the tissue-based universal virus detection for viral metagenomics (TUViD-VM) protocol.
Enrichment

Ultracentrifugation

Different centrifugation techniques were tested in 9 experiments. Control factors were the concentration of sucrose (0%, 30%, and 50%); centrifugation speed (15,000 rpm, 25,000 rpm, and 32,000 rpm in an ultracentrifuge); and duration of centrifugation (1 h, 2 h, and 3 h). In addition, 1 sample was centrifuged a second time (30,000 rpm for 1 h). All samples, except 1, were centrifuged (1,000 rpm for 10 min) before ultracentrifugation. We tested increasing the delta value between virus and host nucleic acids. The optimal combination was found to be 30% of sucrose, 2 h of centrifugation at 15,000 rpm or 35,000 rpm. Results of quadratic loss functions and signal-to-noise ratios are available on request. The second ultracentrifugation provided useful results. The optimal parameters (2 ultracentrifugations) were supported by a confirmation experiment and were subsequently used as part of the protocol (Figure 5 of main text). Comparative clear centrifugation was used. For paramyxovirus (SeV) and influenza virus (A/PR8/1934), the signal-to-noise ratio was increased.

Kits

Enrichment was performed by using the InRichment Virus Reagent I Kit (Analytic Jena AC, Jena, Germany). In another enrichment approach, viral particles were precipitated by using 5× Peg-it Virus Precipitation (System Biosciences, Mountain View, CA, USA) overnight according to the manufacturer’s protocol. Isolation of pure virus RNA and elimination of tissue-related rRNA was performed by using the Ribo Minus Eukaryote Kit (Invitrogen Life Technologies, Grand Island, NY, USA) and the Ribo Minus Concentration Module (Invitrogen Life Technologies) according to the manufacturer’s protocol. The InRichment Virus Reagent I Kit resulted in increased detection of all target nucleic acids, but no improvement of signal-to-noise ratio was observed. The Ribo Minus Kit helped reduce the amount of host nucleic acids, but also reduced the amount of virus nucleic acids and was therefore not used.

Extraction of Nucleic Acids

To evaluate different approaches for nucleic acid extraction, we compared the following commercially available kits according to the manufacturer’s protocols and methods: NucleoSpin RNA II (Macherey-Nagel) without DNA digestion, NucleoSpin Tissue Kit (Macherey-Nagel), PureLink Viral RNA/DNA Kit (Invitrogen Life Technologies), QIAmp UltraSens Virus Kit
(QIAGEN), QIAmp MinElute Virus Spin Kit (QIAGEN), Viral Mini Kit (QIAGEN), RTP DNA/RNA Virus Ultra-Sense Kit (Invitiek, Berlin, Germany), RTP DNA/RNA Virus Mini Kit (Invitiek), classical phenol/chloroform extraction (5) (Carl Roth GmbH, Karlsruhe, Germany), and TRIzol LS (Invitrogen Life Technologies). Every kit was tested with 1 of the infected tissue model aliquots. Freshly extracted DNA/RNA was eluted in 60 µL of RNAse-free water (QIAGEN).

Results were analyzed regarding their capability to increase the signal-to-noise ratio between virus and host nucleic acids in comparison to our standard kit (NucleoSpin RNA II, without DNA digestion). Whenever a DNA extraction was suggested in any of the kits, this step was excluded to prevent digestion of virus nucleic acids. The QiaAmp Ultra Sense Virus Kit and the QIAGEN Viral Mini Kit showed the best results within the range of extraction kits. However, the best results for our purpose were shown by extraction using the TRIzol LS. Extraction results are shown in Figure 6 of main text. We combined extraction with TRIzol LS and the QIAGEN Viral Mini Kit in the overall purification protocol.

Random Amplification

Different random amplification primer strategies (K primer [6], 3′-locked primer [7], and conventional random primers N₁₀ and N₁₂) were used. These strategies were compared by using 60 µL of RNA/DNA extracted with the NucleoSpin RNA II Kit (Macherey-Nagel).

Random Primer

For random cDNA synthesis, 60 µL of purified RNA/DNA was incubated with 4 µL (10 µmol/L) of K random primers (6) and 6.4 µL (25 µmol/L) of dNTPs for 5 min at 65°C. Reverse transcription of the first strand was accomplished by incubating with 5U of reverse transcriptase, 1.6 µL of RNase Inhibitor (Roche Diagnostics), 8 µL of 10× reaction buffer, 18 µL of 25 mmol/L MgCl₂, and 1.2 µL of water for 60 min. The reaction was stopped by incubating at 95°C for 10 min. Second-strand synthesis was accomplished by incubation of 20 µL of first-strand product with 2 µL of 50 µmol/L of K-random primers, 3 µL of 10× Klenow buffer (2 min at 95°C) and 1.7 µL of 25 mmol/L Klenow fragment for 60 min at 37°C. Double-stranded cDNA was amplified by using 5 µL of Klenow reaction product, 4 µL of 10 µmol/L of K primer, 9 µL of Ampli Taq Polymerase (5U/µL), 5 µL of 10× Ampli Taq polymerase buffer (Applied
Biosystems, Darmstadt, Germany), 4 µL (2.5 mmol/L) of dNTPs, 10 µL of 50 mmol/L MgCl₂, and 13 µL of water. The PCR mixture was incubated according to the protocol of Stang and Korn (6).

The 3′-locked, N10, and N12 random PCRs are used with DNA or cDNA. PCRs were performed by using 5 µL of cDNA, 0.5 µL of either 3′-locked-random-primer (40 µmol/L), N₁₀ primer (40 µmol/L) or N₁₂ primer (40 µmol/L), 2.5 µL of 10× Platinum buffer (Invitrogen Life Technologies), 1.0 µL (2.5 µmol/L) of dNTPs (Invitrogen Life Technologies), 2.0 µL of 50 µmol/L MgCl₂ (Invitrogen Life Technologies), 0.2 µL (5U/µL) of Platinum Taq Polymerase (Invitrogen Life Technologies), and 13.8 µL of water. PCR mixtures were incubated according to the protocol of Clem et al. (7).

Kits

Two kits were tested. Freshly synthesized RNA, cDNA, or DNA was amplified by using multiple displacement amplification with the REPLI-g UltraFast Mini Whole Genome Amplification Kit (QIAGEN) and the QuantiTect Whole Transcriptome Kit (QIAGEN) according to the manufacturer’s protocol.

Random amplification efficiency of the different methods was evaluated regarding the increase of the signal-to-noise ratio between virus and host nucleic acids (Figure 7 of main text). K primer amplification and the QuantiTect Whole Transcriptome Kit showed comparable results. However, the amount of generated virus-specific nucleic acids was slightly higher when K primers were used. Thus, because K primers are comparable inexpensive and easier to control than commercial kits, this amplification method was used in the TUViD-VM-protocol.

Development of Protocol

To establish a full protocol on the basis of individual experiments, we combined the best methods and tested them with model tissue before evaluating the signal-to-noise ratio. From all single method sets, the best methods were selected and progressively used. The TUViD-TM protocol is shown in Figure 1 of main text. Tested methods were homogenization, filtration, methods for the enrichment of viruses, digestion of background nucleic acids, nucleic acid extraction methods, and random amplification strategies. The different methods tested are described in Table 1 of main text.
References

