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Since the early 2000s, the Bureau of Communicable Dis-
ease of the New York City Department of Health and Mental 
Hygiene has analyzed reportable infectious disease data 
weekly by using the historical limits method to detect un-
usual clusters that could represent outbreaks. This method 
typically produced too many signals for each to be inves-
tigated with available resources while possibly failing to 
signal during true disease outbreaks. We made method 
refinements that improved the consistency of case inclu-
sion criteria and accounted for data lags and trends and 
aberrations in historical data. During a 12-week period in 
2013, we prospectively assessed these refinements using 
actual surveillance data. The refined method yielded 74 sig-
nals, a 45% decrease from what the original method would 
have produced. Fewer and less biased signals included a 
true citywide increase in legionellosis and a localized cam-
pylobacteriosis cluster subsequently linked to live-poultry 
markets. Future evaluations using simulated data could 
complement this descriptive assessment.

Detecting aberrant clusters of reportable infectious dis-
ease quickly and accurately enough for meaningful 

action is a central goal of public health institutions (1–3). 
Clinicians’ reports of suspected clusters of illness remain 
critical for surveillance (4), but the application of auto-
mated statistical techniques to detect possible outbreaks 
that might otherwise not be recognized has become more 
common (5). These techniques are particularly important in 
jurisdictions that serve large populations and receive a high 
volume of reports because manual review and investigation 
of all reports are not feasible.

Challenges such as lags in reporting and case classifi-
cation and discontinuities in surveillance case definitions, 
reporting practices, and diagnostic methods are common 
across jurisdictions. These factors can impede the timely 
detection of disease clusters. Statistically and computa-
tionally simple methods, including historical limits (6), a 
log-linear regression model (7), and cumulative sums (8), 
each have strengths and weaknesses for prospective cluster  

detection, but none adequately address these common 
data challenges. As technology advances, statistically and 
computationally intensive methods have been developed 
(2,3,5,9–12), and although these methods might success-
fully correct for biases, many lack the ease of implemen-
tation and interpretation desired by health departments.

Since 1989, the US Centers for Disease Control and 
Prevention has applied the historical limits method (HLM) 
to disease counts and displayed the results in Figure 1 of the 
Notifiable Diseases and Mortality Tables in the Morbidity 
and Mortality Weekly Report (13). Because the method 
relies on a straightforward comparison of the number of 
reported cases in the current 4-week period with compa-
rable historical data from the preceding 5 years, its major 
strengths include simplicity, interpretability, and implicit 
accounting for seasonal disease patterns. These strengths 
make it a potentially very useful aberration-detection meth-
od for health departments (12,14–18). The Bureau of Com-
municable Disease (BCD) of the New York City (NYC) 
Department of Health and Mental Hygiene (DOHMH) 
implemented the HLM in the early 2000s (HLMoriginal) as 
a weekly analysis for all reportable diseases for which at 
least 5 years of historical data were available.

In HLMoriginal, 4 major causes of bias existed: 1) incon-
sistent case inclusion criteria between current and historical 
data; 2) lack of adjustment in historical data for gradual 
trends; 3) lack of adjustment in historical data for disease 
clusters or aberrations; and 4) no consideration of report-
ing delays and lags in data accrual. Our objectives were 
to develop refinements to the HLM (HLMrefined) that pre-
served the simplicity of the method’s output and improved 
its validity and to characterize the performance of the re-
fined method using actual reportable disease surveillance 
data. Although we describe the specific process for refining 
BCD’s aberration-detection method, the issues presented 
are common across jurisdictions, and the principles and re-
sults are likely to be generalizable.
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Methods

Overview of Disease Monitoring at BCD
BCD monitors ≈70 communicable diseases among NYCs 
8.3 million residents (19). For passive surveillance, labora-
tories and providers are required to submit disease reports 
(20), and these reports flow into a database system (Ma-
ven, Consilience Software, Austin, TX, USA). Each case 
is classified into 1 of 12 case statuses (Table 1). Depending 
on the disease, cases initially might be assigned a transient 
pending status and, upon investigation, be reclassified as a 
case (confirmed, probable, or suspected) or “not a case.” 
For each disease, a designated disease reviewer is respon-
sible for reviewing cases.

HLM Overview
HLM compares the number of reported cases diagnosed in 
the past 4 weeks (X0) with the number diagnosed within 15 
prior periods (X1–15) comprising the same 4-week period, 
the preceding 4-week period, and the subsequent 4-week 
period during the past 5 years (Figure 1). A 4-week tempo-
ral unit of analysis balances timeliness with stability (6,21). 
For any given disease, if the ratio of current counts to the 
mean of the fifteen 4-week totals is greater than historical 
limits, then the current period is considered aberrant (i.e., 
a signal is generated) (online Technical Appendix (http://
wwwnc.cdc.gov/EID/article/21/2/14-0098-Techapp1.pdf). 
In applying this method in NYC, only increases in case 
counts >2 SD above the historical mean are considered 
because artifactual decreases in case counts would be de-
tected by separate quality-control measures.

HLMoriginal was run each Monday for the 4-week in-
terval that included cases diagnosed through the most re-
cent Saturday. Data on confirmed, probable, suspected, 
or pending cases (Table 1) were analyzed at 3 geographic 

resolutions: citywide, borough (5 boroughs), and United 
Hospital Fund (UHF) neighborhood (42 neighborhoods). 
UHF neighborhoods are aggregations of contiguous ZIP 
codes used to define communities (22). Data were ana-
lyzed at the 2 subcity geographic resolutions to improve 
the signal-to-noise ratio for spatial clusters. For a signal to 
be generated, the current period was required to contain at 
least 3 cases, and the ratio of cases to the historical mean 
was required to be greater than historical limits. Disease 
reviewers were promptly notified of any signals and were 
provided with a corresponding case line list.

Refinements to Address Biases

Bias 1: Inconsistent Case Inclusion Criteria
The first limitation of HLMoriginal as applied in NYC was that 
case inclusion criteria caused current disease counts to be 
systematically higher than baseline disease counts for many 
diseases. Cases classified as confirmed, probable, suspected, 
or pending were analyzed, but some cases with an initial 
pending status were ultimately reclassified after investiga-
tion as “not a case.” This reclassification process was com-
plete for historical periods but ongoing for the current period.

The proportion of initially pending cases that were re-
classified to confirmed, probable, or suspected (rather than 
“not a case”) varied widely by disease (Figure 2). For dis-
eases for which this confirmatory proportion was low, the 
disease counts in the current period included a high propor-
tion of pending cases that would ultimately be reclassified 
as “not a case,” leading to false signals (type I errors). A 
similar bias might apply for nationally notifiable data in 
that provisional and final case counts may be systemati-
cally different (23).

Refinement 1: Consistent Case Inclusion Criteria
HLMrefined included almost all reported cases in the analysis 
regardless of current status (Table 1). This simple modi-
fication led to a more valid comparison of total reporting 

Figure 1. Following Stroup et al. (21), a schematic of the periods 
included in analyses using the historical limits method.

 
Table 1. Case statuses in current and baseline periods included 
in HLMoriginal and HLMrefined, New York City, New York, USA* 

Case status 
Included in 
HLMoriginal 

Included in 
HLMrefined 

Confirmed Yes Yes 
Probable Yes Yes 
Suspected Yes Yes 
Pending† Yes Yes 
Unresolved No Yes 
“Not a case” No Yes 
Chronic carrier No Yes 
Asymptomatic infection No Yes 
Seroconversion 1 y No Yes 
Not applicable No Yes 
Contact No No 
Possible exposure No No 
*HLM, historical limits method; HLMoriginal, method as originally applied in 
New York City before May 20, 2013; HLMrefined, refined method applied 
starting May 20, 2013. 
†Pending is a transient status that in the normal course of case 
investigations can be assigned to a case in the current period but not in 
the baseline period. 
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volume between current and historical periods, assuming 
that reporting is consistent over time, rather than biased 
estimates of the true level of disease. We maintained the 
requirement of the presence of at least 3 confirmed, prob-
able, suspected, or pending cases to be considered a signal 
to prevent alerts driven by cases classified as “not a case.”

Bias 2: Gradual Trends in Historical Data
The second limitation of HLMoriginal was the existence of 
increasing or decreasing trends over time in historical data 
for many diseases. Whether these trends are true changes 
in disease incidence or artifacts of changing reporting or 
diagnostic practices, anything that causes disease counts in 
the baseline period to be systematically higher than current 
disease counts increases type II errors, and anything that 
causes baseline disease counts to be systematically lower 
than current disease counts increases type I errors.

Refinement 2: Adjusted Historical Data to Remove  
Gradual Trends
For HLMrefined, we identified and removed any significant 
linear trend in historical data. We accomplished this refine-
ment by running a linear regression on weekly case counts 
for each disease at each geographic resolution and refit-
ting the resulting residuals to a trend line with a slope of 0 
and an intercept set to the most recent fitted value. Across 
diseases, linear trends were of relatively small magnitude; 
the greatest was for Campylobacter, for which the slope 
increased by ≈0.25 cases per week (Figure 3).

To minimize the influence of outliers on the overall 
trend, we excluded weekly counts >4 SD above or below 

the average for the baseline period from the regression. 
However, these counts were added back after the model 
had been fitted.

Bias 3: Inclusion of Past Clusters in Historical Data
The third major bias in HLMoriginal was the inclusion of past 
clusters or aberrations in historical data. This bias reduced 
the method’s ability to detect aberrations going forward, 
which increased type II errors.

Refinement 3: Exclusion of Past Clusters from Historical Data
To prevent this bias, after adjusting for gradual trends, we 
considered any 4-week period in which disease counts were 
>4 SD above the average to be an outlier and reset the count 
to the average number of cases in the remaining historical 
instances of that 4-week period. (We selected the threshold 
of 4 SD after manually reviewing case counts over time for 
all diseases.) For example, during 2007–2011, the number 
of dengue fever cases diagnosed during weeks 35–38 in 
2010 was >4 SD above the average number of cases during 
those 5 years. Consequently, that 4-week period in 2010 
was considered an outlier and reset to the average dengue 
fever count in weeks 35–38 in 2007, 2008, 2009, and 2011 
(Figure 4). This technique can cause the case counts over 
time to appear jagged, but because our objective was to 
ensure a valid comparison between historical and current 
data, the smoothness of trends over time is irrelevant.

Bias 4: Delays in Data Accrual
Finally, data accrual delays can contribute to type II errors. 
This method is applied on Mondays for the 4-week period 

Figure 2. Confirmatory proportion 
of pending cases for diseases with 
any pending cases, New York City, 
New York, USA, July–December 
2012. The confirmatory proportion 
was defined as the proportion 
of initially pending cases that 
were reclassified to confirmed, 
probable, or suspected (rather 
than to “not a case”). Diseases 
that are not routinely investigated, 
e.g., campylobacteriosis, enter 
the database with confirmed (not 
pending) case status and are  
not shown.
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that includes cases diagnosed through the most recent Sat-
urday, so any lag between diagnosis and receipt by BCD 
of >2 days has the potential to deflate disease counts in the 
current period and reduce signal sensitivity. During July 
18, 2012–August 28, 2013, the median lag between diag-
nosis and receipt by BCD was 5 days (range in median lag 
by disease 0–24 days).

Although DOHMH works with laboratories and pro-
viders to improve reporting practices, substantial reporting 
lags will continue for some diseases because of practices 
related to testing (e.g., time required for culturing and iden-
tifying Salmonella from a clinical sample) and surveillance 
(e.g., for some diseases, reports are held for delivery to the 
surveillance database until both a positive screening test 
and a confirmatory test are reported).

Refinement 4: Repeated Analyses to Accommodate  
Delays in Data Accrual
For diseases for which a delay of >1 week is not too long for 
a signal to be of public health value, we repeated the analysis 
for a given 4-week period over 4 consecutive weeks to allow 
for data accrual, thus improving signal sensitivity. In other 
words, we first analyzed cases diagnosed during a 4-week 
period on the following Monday. Updated data for the same 
4-week period were re-analyzed on the subsequent 4 Mon-
days as data accrued to identify any signals that were initially 
missed because of incomplete case counts.

Customization by Disease
In HLMoriginal, we conducted the same analysis for all dis-
eases under surveillance, despite very different disease 
agents and epidemiologic profiles. We solicited comments 
from disease reviewers to ensure that the method was be-
ing applied meaningfully to all diseases and received  

feedback that HLMoriginal produced an unmanageable number 
of signals, which led to their dismissal without investigation. 
We also suspect that on some occasions HLMoriginal did not  
detect true clusters because trends in disease counts de-
creased over the baseline period or because historical out-
breaks masked new clusters. We responded by allowing 
for disease-specific analytic modifications, which includ-
ed reducing the number of diseases monitored using this 
method, allowing for customized signaling thresholds, and 
accounting for sudden changes in reporting (Table 2).

We reduced the ≈70 diseases to which HLMoriginal  
had been applied to the 35 for which prospective and 
timely identification of clusters might result in pub-
lic health action. For example, clusters of leprosy or 
Creutzfeldt-Jakob disease diagnoses within a 4-week 
period would not be informative because these dis-
eases have long incubation periods, measured in 
years. We also excluded diseases that occur very in-
frequently or are nonexistent (defined as having  
an annual mean of <4 cases during 2008–2012). For ex-
ample, we excluded tularemia and human rabies because 
any clusters of these diseases would be detected without 
automated analyses and because the underlying normal-
ity assumption of the method is violated for rare events.

Signals were most common at the neighborhood 
geographic level because of the increased noise resulting  
from small counts. Therefore, we also provided the  
option to reviewers to require >3 confirmed, probable, sus-
pected, or pending cases to qualify as a signal at this geo-
graphic resolution.

Evaluation of HLMrefined
BCD implemented HLMrefined on May 20, 2013, including 
automatically generating reports for disease reviewers to 
summarize information about cases included in signals (on-
line Technical Appendix). To determine the effects of the 

Figure 3. Unadjusted and adjusted weekly citywide counts of 
campylobacteriosis cases to illustrate adjustment for a linear 
trend in historical data, New York City, New York, USA, November 
2006–October 2011.

Figure 4. Unadjusted and adjusted 4-week moving sum of 
citywide dengue fever cases to illustrate adjustment for outliers in 
historical data, New York City, New York, USA, November 2006–
October 2011.
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above refinements, we compared signals detected during 
the 12 weeks after implementation with those that would 
have been detected had HLMoriginal still been in place. A sig-
nal was defined as any set of consecutive 4-week periods, 
permitting 1-week gaps, where the disease counts were 
above historical limits for either HLMoriginal or HLMrefined. 
Signals that were repeated in the same geographic area over 
multiple consecutive weeks were counted only once. Re-
stricting analysis to a common set of 35 diseases (Table 
2), we quantified the number of signals, determined the 
cause of any differences in signals between HLMoriginal and 
HLMrefined, and monitored the outcome of any public health 
investigations triggered by automated signals.

We describe our experience with these methods in a 
government setting to support applied public health practice.  

In this setting, a complete list of true disease clusters and 
the resources to thoroughly investigate every statistical sig-
nal do not exist. We instead defined the set of true disease 
clusters as those identified using either method that could 
not be explained by any known systematic bias. We calcu-
lated type I and type II error rates using this set. Although 
artificial surveillance data generated through simulations 
have been created (24,25), those existing data do not reflect 
the dynamism and variability in actual reportable disease 
surveillance data, such as pending case reclassification 
(bias 1) and data accrual lags (bias 4). Accounting for this 
dynamism is essential for a valid comparison of HLMoriginal 
and HLMrefined. Thus, we chose a practical and descriptive 
approach to evaluating these methods rather than a quanti-
tative simulation study.

 
Table 2. Diseases included in analyses using HLMrefined and details of customizations, New York City, New York, USA, May 20– 
August 5, 2013* 

Disease 
Minimum no. cases in UHF 

neighborhood to qualify for signal Further customization 
Amebiasis 5  
Anaplasmosis (human granulocytic) 3  
Babesiosis 3  
Campylobacteriosis 8  
Cholera 3  
Cryptosporidiosis 5  
Cyclosporiasis 3  
Dengue 3  
Ehrlichiosis (human monocytic) 3  
Giardiasis 5  
Haemophilus influenzae disease, invasive 3  
Hemolytic uremic syndrome 3  
Hepatitis A 5  
Hepatitis B (acute) 2†  
Hepatitis D 2†  
Hepatitis E 2†  
Legionellosis 5  
Listeriosis 3  
Malaria 3  
Meningitis, bacterial 4  
Meningitis, viral (aseptic) 3  
Meningococcal disease (Neisseria meningitidis) 3  
Paratyphoid fever 3  
Rickettisalpox 3  
Rocky Mountain spotted fever 3 Restrict analysis to confirmed, 

probable, and suspected cases 
and implement a 4-wk lag to 

allow for data accrual 
Shiga toxin–producing Escherichia coli (including E. coli 
O157:H7) infection 

3  

Shigellosis 10  
Staphylococcus aureus infection, vancomycin intermediate 3  
Streptococcus (group A) disease, invasive 5 Restrict analysis to confirmed, 

probable, suspected, and 
pending cases 

Streptococcus (group B) disease, invasive 5  
Streptococcus pneumoniae disease, invasive 5  
Typhoid fever 3  
Vibrio spp. infection, noncholera (including parahaemolyticus 
and vulnificus) 

3  

West Nile disease 3  
Yersiniosis 3  
* HLMrefined, refined method applied starting May 20, 2013; UHF, United Hospital Fund. 
†These are the only diseases for which the signaling threshold was decreased below 3 cases. 
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Results
In the first 12 weekly analyses, HLMoriginal would have pro-
duced 134 signals, and HLMrefined produced 74 signals, a 
45% decrease (Table 3). Of the HLMoriginal signals during 
this period, 47 (35%) would have been at the neighborhood 
geographic resolution with fewer cases than the reviewers’ 
threshold for action; these signals were omitted from fur-
ther evaluation. Of the remaining 107 signals across both 
methods, 54 (50%) were detected by both methods, 33 
(31%) only by HLMoriginal, and 20 (19%) only by HLMrefined.

We classified each signal into 1 of 3 categories (Table 
4): attributable to an uncorrected bias toward signaling, 
attributable to the correction of a bias against signaling, 
or not attributable to any known systematic bias. Of the 
signals detected by HLMoriginal, 2 campylobacteriosis sig-
nals and 1 invasive Haemophilus influenzae disease sig-
nal were attributable to a bias toward signaling caused by 
an increasing trend in historical data. HLMrefined missed 9 
signals that were detected only by HLMoriginal because the 
confirmatory proportion was larger in current data than in 
historical data.

Two signals detected by HLMrefined were attributable to 
the removal of outliers from historical data; a legionellosis 
increase in the Bronx was masked by a prior increase in 
comparable weeks in 2009, and an amebiasis signal in a 
neighborhood was masked by a prior increase in compa-
rable weeks in 2012. One signal detected by HLMrefined was 
attributable to the adjustment of a decreasing trend in base-
line disease counts of viral meningitis. Seventeen signals 
detected only by HLMrefined were attributable to accounting 
for lags in data accrual (10 signals were first detectable af-
ter 1-week lag, 4 signals after 2 weeks, 2 signals after 3 
weeks, and 1 signal after 4 weeks).

Overall, we identified 83 true clusters that could not be 
explained by any known systematic bias (i.e., 54 clusters 
identified by both HLMoriginal and HLMrefined and 29 clusters 
detected by only 1 of the methods and attributable to the 
correction of a bias against signaling). During the evalua-
tion period, the percentage of all signals that did not corre-
spond to these true clusters (type I error rate) for HLMoriginal 
was 28% (24 of 87 signals) and, for HLMrefined, 0% (0 of 
74 signals). The percentage of all true clusters that were 
not detected (type II error rate) for HLMoriginal was 24% 
(20 of 83 true clusters) and, for HLMrefined, 11% (9 of 83  
true clusters).

During these 12 weeks, 2 disease clusters occurred 
that we would have expected to detect using HLM. The 
first cluster of interest was a citywide increase in legionel-
losis in June 2013 (26). HLMrefined first detected this in-
crease with a cluster in Queens on June 24, 2013. The next 
week, both HLMrefined and HLMoriginal detected the citywide 
increase. Although HLMrefined and HLMoriginal might detect 
similar disease clusters at slightly different times because 

of differences in event inclusion criteria, the refinements do 
not directly affect timeliness.

On June 24, 2013, HLMoriginal would have generated 16 
automated signals (including 3 for campylobacteriosis), and 
HLMrefined generated 5 signals (including 1 for campylobac-
teriosis); both methods detected a cluster of 11 campylobac-
teriosis cases in 1 neighborhood. After investigation, 8 of the 
cases were determined to be among children 0–5 years of 
age from Mandarin- or Cantonese-speaking families, 5 of 
whom had direct links to 1 of 2 local live-poultry markets. 
Consequently, pediatricians were educated about the associ-
ation between live-poultry markets and campylobacteriosis, 
and health education materials about proper poultry prepa-
ration and hygiene were distributed to live-poultry markets.

Discussion
In refining the HLM to correct for major biases, we im-
proved the ability to prospectively detect clusters of re-
portable infectious disease in NYC while preserving the 
simplicity of the output. Specifically, we addressed data 
challenges that are common to many jurisdictions, includ-
ing improving consistency of case inclusion criteria, ac-
counting for gradual trends and aberrations in historical 
data, and accounting for reporting delays.

HLMrefined found fewer signals overall than HLMoriginal, 
which, in practice, is perhaps the greatest improvement. 
Disease reviewers had become accustomed to a large 
number of signals that did not represent true outbreaks, 
which led to dismissal of many signals without investiga-
tion. Fewer, higher quality signals produced by HLMrefined, 
supported by improvements in the ad hoc type I and type 
II error rates, led to more careful inspection and a higher 
probability of identifying true clusters, e.g., the true cam-
pylobacteriosis cluster in a Brooklyn neighborhood.

Although we consider HLMrefined to be a substantial im-
provement upon HLMoriginal, we are aware that some limita-
tions exist. In expanding case inclusion criteria to encom-
pass all reports, we corrected a large bias but might have 
introduced a small bias. Because HLMrefined considers the 
overall volume of reported cases, the implicit assumption is 
that the confirmatory proportion is constant over time out-
side of seasonal patterns. If this assumption is violated, and 
the confirmatory proportion differs between historical and 
current data, HLMrefined can be biased. This bias is the reason 
that 9 signals detected by HLMoriginal were not also detected 
by HLMrefined during the evaluation period. Because these 9 
signals might reflect disease clusters that would have been 
missed because of changes in the confirmatory proportion 
over time, we recommend implementing a lagged analysis 
that is restricted to confirmed, probable, and suspected cas-
es. The signals produced by this lagged analysis can then 
be compared with signals produced in near real-time using 
all case statuses, and thus whether HLMrefined systematically 
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fails to detect clusters can be assessed. Implementing this 
approach post hoc yielded 2 additional clusters that both 
HLMrefined and HLMoriginal missed. Also, as with any method 
that defines geographic location according to patient resi-
dence, HLMrefined can miss point source outbreaks when ex-
posure occurs outside the residential area.

Next steps include addressing the arbitrary temporal 
and geographic units of analysis. HLMrefined is optimized to 
detect clusters of 4-week duration at citywide, borough, or 
neighborhood geographic resolution. This method is likely 
to fail to detect clusters of shorter or longer duration, at 
sub-neighborhood geographic resolution, and in locations 
that span borough or neighborhood borders. In February 
2014, we began applying the prospective space–time per-
mutation scan statistic so we could use flexible spatial and 
temporal windows (27). We plan to expand the application 
of HLMrefined to disease subspecies and serogroups within 
diseases (e.g., for salmonellosis) as this information be-
comes available in BCD’s database system.

Health departments that receive a high volume of re-
ports might consider adopting a method similar to HLMre-

fined to improve prospective outbreak detection and contrib-
ute to timely health interventions. Simulation studies using 
complex artificial data that adequately reflect the dynamic 
nature of real-time surveillance data across a wide range 
of reportable diseases with variable trends over time and 
historical outbreaks would be valuable.
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Technical Appendix 

The Technical Appendix contains mathematical notation for the HLM, details on 

customized analyses implemented for 2 diseases with unique patterns of reporting and diagnosis 

over time, a technical note, sample output for summarizing and presenting signals, and sample 

SAS code (SAS v.9.2, SAS Institute, Cary, NC). 

Mathematical Notation for HLM 

𝑋0
𝜇

> 1 + 2 ∗ �
𝜎𝑥
𝜇
�                                                                         (1) 

where X0 is the current total of cases in the most recent four-week interval, and µ and σx are the 

mean and standard deviation, respectively, of the 15 historical four-week periods (X1−15).  

Customized Analyses for Two Diseases 

For Group A Streptococcus, new filtering rules in our surveillance database system were 

applied in July 2012 to screen out reports of specimens collected from noninvasive sources, 

resulting in an abrupt decrease in the number of reported cases. Ignoring this change would have 

biased against signaling. Therefore, we continued to consider only cases with confirmed, 

probable, suspected, or pending statuses. Because the confirmatory proportion is high for this 

disease (73%, Figure 2), including pending cases does not strongly bias toward signaling. 

For Rocky Mountain Spotted Fever, the total number of reported cases increased 

beginning in summer 2011, while there was no corresponding increase in the number of 

confirmed, probable, and suspected cases. Ignoring this pattern would have biased toward false 

signaling. We therefore monitor only confirmed, probable, and suspected cases at a lag of four 

http://dx.doi.org/10.3201/eid2102.140098
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weeks to allow for near complete data accrual. Signal quality was prioritized over timeliness for 

this disease, which has no immediate public health intervention. 

Technical Note 

Since these adjustments of the baseline data require a time series in which to identify 

outliers, calculate averages, and run regressions, baselines will need to be prospectively updated 

at regular intervals. It is not necessary to recalibrate historical data on a weekly basis because the 

adjustments will not be very different from week to week. However, the interval at which 

recalibrations are made should be sufficiently short such that recent disease trends are taken into 

account. The interval must be shorter than one year because data less than a year in the past is 

considered as the most recent historical data point in the method (X3 in Figure 1), and we want at 

least 12 weeks to have passed between the end of the baseline period and the date of 

recalibration to allow for sufficient data accrual. We chose this 12 week cutoff based on the fact 

that in 2010 and 2011, all relevant diseases had at least 70% data accrual at 12 weeks post 

diagnosis, and all but two diseases (encephalitis and human granulocytic anaplasmosis) had at 

least 90% data accrual.  

It is these considerations that led us to conclude that the baseline data should be 

recalibrated every 26 weeks (twice per year), e.g., on the 1st and 27th weeks of the year, and 

include historical data from the earliest week that is required for comparison by the method (X13 

in Figure 1) through 12 weeks prior to the recalibration date. In other words, in the baseline 

period to be used for prospective surveillance during weeks 1 through 26 of year Y, the earliest 

week that is required is week 46 of year Y-6 (the 4-week period from week 46 through week 49 

of year Y-6 constitutes time period X13 for week 1 of year Y). The latest week that is included is 

week 40 of year Y-1 (12 weeks prior to week 1 of year Y). Analogously, the baseline period for 

weeks 27 through 52 of year Y will include week 20 of year Y -5 through week 14 of year Y. 

Sample SAS Code for Implementing Refinements 2 and 3 

The following sample SAS code adjusts historical data to remove gradual trends and 

resets outliers that could indicate past clusters to the average number of cases in the remaining 

instances of that 4-week period in historical data.  
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Structure your historical dataset called collapsed_events_city in the following format. 

The variable “fsatdiag” refers to the Saturday ending the week of interest (i.e. 5/17/2008 refers to 

the week from Sunday, 5/11/2008, through Saturday, 5/17/2008, inclusive). Ensure that every 

Saturday is included in the dataset for each disease and geographic area, even if the number of 

events for that week is zero. If you are running an analysis at a smaller geographic area, include 

another variable to identify the disease count within each area.  

Sample structure for input dataset, named “collapsed_events_city” 

Disease_code Disease Events fsatdiag 
Dis1 Disease1 15 5/17/2008 
Dis1 Disease1 4 5/24/2008 
… … … … 
Dis2 Disease2 0 5/17/2008 
 

********************************************************************;   
* PROGRAM NAME: Adjusting Baseline for HLM Refined    
*    PROGRAMMER: Alison Levin-Rector                 
********************************************************************; 
 
*-- assign libnames; 
libname signals 'SPECIFY LOCATION TO SAVE ADJUSTED BASELINE DATA'; 
 
* 1. REMOVE GRADUAL TRENDS FROM HISTORICAL DATA; 
* weekly event count is excluded from the regression model if it is more than 
4 standard deviations greater or less than the mean of entire dataset, to 
avoid biasing trend; 
*-- define the baseline period depending on whether we are in the first or 
second half of the calendar year; 
data _null_; 
 if week(date()) <= 26 then firstday = nwkdom(1,7,1,year(date())-  
  6)+45*7; 
 if week(date()) <= 26 then lastday = nwkdom(1,7,1,year(date())-1)+39*7; 
 if week(date()) > 26 then firstday = nwkdom(1,7,1,year(date())-5)+19*7; 
 if week(date()) > 26 then lastday = nwkdom(1,7,1,year(date()))+13*7; 
 call symputx ('firstday_BL',firstday); 
 call symputx ('lastday_BL',lastday); 
run; 
 
*-- exclude weeks with event counts that are more than 4 standard deviations 
above or below the mean for that disease from the regression; 
proc sql; 
 create table collapsed_events_outliers as 
select *, mean(events) + 4*std(events) as cutoff1, mean(events) -   
 4*std(events) as cutoff2 
 from collapsed_events_city 
where fsatdiag <= &lastday_BL  
 group by disease_code 
 order by disease_code, fsatdiag; 
quit; 
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data collapsed_events_outliers; 
 set collapsed_events_outliers; 
 if events <= cutoff1 & events >= cutoff2 then events_model = events; 
run; 
*-- run regression; 
proc reg data = collapsed_events_outliers; 
 by disease_code; 
 model events_model = fsatdiag; 
 output out = reg_output r = res p = pred; 
 ods output ParameterEstimates = params; 
run; 
*-- save the number of events predicted by the linear regression at the most 
recent week for each disease; 
proc sql; 
 create table newline as 
 select disease_code, pred as new_intercept 
 from reg_output 
 having max(fsatdiag) = fsatdiag 
 order by disease_code; 
quit; 
*-- save the p-values from slope term to determine whether the regression 
found a significant trend for each disease; 
proc sql; 
 create table slopes as 
 select disease_code, probt 
 from params 
 where strip(variable) = "fsatdiag" 
 order by disease_code; 
quit; 
*-- if the trend had a significant slope, then adjust event counts so that 
the trend over time is flat and if not, preserve the original event counts; 
data adjusted_events_sig; 
 merge reg_output slopes newline; 
 by disease_code; 
 res2 = events-pred; 
 events_adj = new_intercept + res2; 
 if probt > .05 | probt = . then events_adj = events; 
run; 
 
* 2. EXCLUDE PAST CLUSTERS FROM HISTORICAL DATA; 
* This step is applied to 4-week periods rather than weekly counts, so first 
we create a moving 4-week sum of events over our entire baseline period; 
data adjusted_events_sig_outliers; 
   set adjusted_events_sig; 
   by disease_code; 
   retain num_sum num_sum_adj 0; 
   if first.disease_code then do; 
     count=0; 
    num_sum=0; 
  num_sum_adj=0; 
   end; 
   count+1; 
 last4=lag4(events); 
   if count gt 4 then num_sum=sum(num_sum,events,-last4); 
   else num_sum=sum(num_sum,events); 
   last4adj=lag4(events_adj); 
   if count gt 4 then num_sum_adj=sum(num_sum_adj,events_adj,-last4adj); 
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   else num_sum_adj=sum(num_sum_adj,events_adj); 
 drop last4 last4adj; 
run; 
proc sql; 
 create table adjusted_events_sig_outliers as 
 select disease_code, disease, fsatdiag, num_sum, num_sum_adj,   
  significant, mean(num_sum_adj) + 4*std(num_sum_adj) as cutoff 
 from adjusted_events_sig_outliers 
 where count >= 4 
 group by disease_code 
 order by disease_code, fsatdiag; 
quit; 
*-- require more than 2 events to be considered an outlier; 
data adjusted_events_sig_outliers; 
 set adjusted_events_sig_outliers; 
 num_sum_outliers = num_sum_adj; 
 if num_sum_adj >= cutoff & num_sum_adj > 2 then num_sum_adj = .; 
 week = week(fsatdiag) + 1; 
run; 
*-- fill in dropped outliers with average of the same week from other years; 
proc sql; 
 create table averages as 
 select disease_code, week, avg(num_sum_adj) as num_sum_adj_avg 
 from adjusted_events_sig_outliers 
 group by disease_code, week 
 order by disease_code, week; 
quit; 
proc sort data = adjusted_events_sig_outliers; by disease_code week; run; 
data adjusted_events_sig_fill; 
 merge adjusted_events_sig_outliers averages; 
 by disease_code week; 
 if num_sum_adj = . then num_sum_adj = num_sum_adj_avg; /* this is where 
  we fill them in*/ 
 drop week num_sum_adj_avg; 
run; 
*-- save the adjusted historical data to memory; 
proc sort data = adjusted_events_sig_fill out = 
signals.adjusted_baseline_city;  
by disease_code fsatdiag;  
run; 
 

Sample Output for Summarizing and Presenting Signals 

The following sample output is an example of the presentation of a signal for one disease 

and geographic resolution. SAS code used to produce this output is provided in the subsequent 

section. This output is automatically generated and placed in a secured folder. The location of 

this output is then sent by e-mail to the appropriate disease reviewer for each signal. Not 
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included in this sample output is a summary of all signals produced each week that is distributed 

to the entire Bureau of Communicable Disease. 

Campylobacteriosis 

UHF Signal in Neighborhood X 

Disease 
Unit of 

geography 
Date of 
interest 

Total dx 
past 4 
weeks:  

26MAY13 -  
22JUN13 

Signal 
Strength (# 

of SDs 
above 
mean) 

new signal 
since last 

week? 

if not new, 
how many 
new events 
in signal? 

Rate per 
100,000 in 
signal area 

past 4 
weeks 

Citywide 
rate per 
100,000 
past 4 
weeks 

Campylobacteriosis Neighborhood 
X 

Diagnos
is date 

11 5.70 yes N/A 8.6 1.55 

Total dx past 4 weeks includes only confirmed, probable, suspect and pending case statuses 
When # of SDs above mean > 2, current period is considered a signal 
A missing signal strength value indicates an SD = 0 in the baseline period 
 

 

Year Most recent week (Sun-Sat) 2 weeks ago 3 weeks ago 4 weeks ago Total 
2013 Pending 0 0 0 0 0 
2013 Conf/Prob/Susp 4 2 3 2 11 
2012 Conf/Prob/Susp 3 1 1 0 5 
2011 Conf/Prob/Susp 1 1 1 0 3 
2010 Conf/Prob/Susp 0 0 3 0 3 
2009 Conf/Prob/Susp 1 0 0 1 2 
2008 Conf/Prob/Susp 0 1 1 0 2 
Unadjusted counts of cases by year, week and case status 
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Technical Appendix Figure 1. Spatial distribution of the address at time of report for cases included in the 

signal and rates of disease by UHF neighborhood in the previous 4 weeks. 

Case locations have been moved to a different neighborhood to protect confidentiality. 
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# Event ID 
Pat. 
init. Disease status 

Investigation 
status Diagnosis date Gender Age Address Boro Zip UHF Geocode 

1 XXXXXX XX CONFIRMED NOT_NEEDED 05/28/2013 XXXXX N/A XXXXXX XX XXXXX Neighborhood X yes 
2 XXXXXX XX CONFIRMED NOT_NEEDED 05/29/2013 XXXXX N/A XXXXXX XX XXXXX Neighborhood X yes 
3 XXXXXX XX CONFIRMED NOT_NEEDED 06/04/2013 XXXXX N/A XXXXXX XX XXXXX Neighborhood X yes 
4 XXXXXX XX CONFIRMED NOT_NEEDED 06/05/2013 XXXXX N/A XXXXXX XX XXXXX Neighborhood X yes 
5 XXXXXX XX CONFIRMED NOT_NEEDED 06/06/2013 XXXXX N/A XXXXXX XX XXXXX Neighborhood X yes 
6 XXXXXX XX CONFIRMED NOT_NEEDED 06/12/2013 XXXXX N/A XXXXXX XX XXXXX Neighborhood X yes 
7 XXXXXX XX CONFIRMED NOT_NEEDED 06/13/2013 XXXXX N/A XXXXXX XX XXXXX Neighborhood X yes 
8 XXXXXX XX CONFIRMED NOT_NEEDED 06/17/2013 XXXXX N/A XXXXXX XX XXXXX Neighborhood X yes 
9 XXXXXX XX CONFIRMED NOT_NEEDED 06/17/2013 XXXXX N/A XXXXXX XX XXXXX Neighborhood X yes 
10 XXXXXX XX CONFIRMED NOT_NEEDED 06/18/2013 XXXXX N/A XXXXXX XX XXXXX Neighborhood X no 
11 XXXXXX XX CONFIRMED NOT_NEEDED 06/21/2013 XXXXX N/A XXXXXX XX XXXXX Neighborhood X no 
Identifying information is suppressed to protect confidentiality. 
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Technical Appendix Figure 2. Moving 4-week sum of adjusted case counts compared with historical mean ± 2 SD. 
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Sample SAS Code for Summarizing and Presenting Signals 

The following sample SAS code applies the HLM method and creates an output 

document with a summary of all signals as well as a detailed linelist report for each signal 

detected (see sample output above). Also included is code that automates the emailing of signal 

details to reviewers. 

The input dataset should be event-level data in the following structure. The variable 

“fsatdiag” refers to the Saturday following the diagnosis date for each event. The following code 

is only for a citywide analysis. If you are running an analysis at multiple geographic resolutions, 

then include another variable to indicate the geographic unit. The “confirmatory” variable is an 

indicator variable for disease status that is set to 1 if the case is confirmed, probable, suspected, 

or pending and 0 if it is not. The input dataset should also include variables such as patient 

initials, disease status, diagnosis date, gender, and age for display in linelists, and X and Y 

coordinates for mapping.  

Sample structure for input dataset, named “event_level_input” 

Disease_code Disease Event_ID fsatdiag confirmatory 
Dis1 Disease1 XXXXX1 5/17/2008 1 
Dis1 Disease1 XXXXX2 5/24/2008 0 
… … … … … 
Dis2 Disease2 XXXXX4 5/17/2008 1 
 
 
 
 
********************************************************************;   
* PROGRAM NAME: Analysis and Output for HLM Refined    
*  PROGRAMMERS: Alison Levin-Rector          
*     Elisha Wilson                                                   
*                   Deborah Kapell              
********************************************************************; 
 
* create macro variables for the most recent Saturday in the dataset and 
today’s date; 
proc sql noprint; 
 select max(fsatDiag) 
 into :maxFSATDiag 
 from event_level_input; 
quit; 
 
data _null_; 
call symput ('fileweek',put(today(),date9.)); 
run; 
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***** CITYWIDE *****; 
* pull in recent data (since the end of the baseline period); 
proc sql; 
 create table current_data as 
 select disease_code, disease, fsatdiag, count(event_id) as events_adj,  
  count(confirmatory) as confirmatory 
 from event_level_input 
 where fsatdiag > (&lastday_BL - 28) 
 group by disease_code, disease, fsatdiag 
 order by disease_code, disease, fsatdiag; 
quit; 
* merge current data with baseline data and categorize weeks into relevant 
time periods for analysis; 
data trends1;  
 set signals.adjusted_baseline_city (rename=(num_sum_adj = events_adj))  
  current_data; 
 if fsatdiag >= (&maxfsatdiag-22) & fsatdiag <= &maxfsatdiag then   
  period='current'; 
   if abs(fsatdiag - (&maxfsatdiag-365-28)) <= 3 then period='p1'; 
   if abs(fsatdiag - (&maxfsatdiag-365)) <= 3 then period='c1'; 
   if abs(fsatdiag - (&maxfsatdiag-365+28)) <= 3 then period='s1'; 
   if abs(fsatdiag - (&maxfsatdiag-365*2-28)) <= 3 then period='p2'; 
   if abs(fsatdiag - (&maxfsatdiag-365*2)) <= 3 then period='c2'; 
   if abs(fsatdiag - (&maxfsatdiag-365*2+28)) <= 3 then period='s2'; 
   if abs(fsatdiag - (&maxfsatdiag-365*3-28)) <= 3 then period='p3'; 
   if abs(fsatdiag - (&maxfsatdiag-365*3)) <= 3 then period='c3'; 
   if abs(fsatdiag - (&maxfsatdiag-365*3+28)) <= 3 then period='s3'; 
   if abs(fsatdiag - (&maxfsatdiag-365*4-28)) <= 3 then period='p4'; 
   if abs(fsatdiag - (&maxfsatdiag-365*4)) <= 3 then period='c4'; 
   if abs(fsatdiag - (&maxfsatdiag-365*4+28)) <= 3 then period='s4'; 
   if abs(fsatdiag - (&maxfsatdiag-365*5-28)) <= 3 then period='p5'; 
   if abs(fsatdiag - (&maxfsatdiag-365*5)) <= 3 then period='c5'; 
   if abs(fsatdiag - (&maxfsatdiag-365*5+28)) <= 3 then period='s5'; 
run; 
*-- carry out HLM analysis at citywide level; 
proc sql; 
 create table City1 as 
 select disease_code, disease, period, sum(events_adj) as count 
 from trends1 
 where period ^='' 
 group by disease_code, disease, period; 
quit; 
* count the number of confirmed/probable/suspect/pending cases; 
proc sql; 
 create table confirmatory1 as 
 select disease_code, disease, sum(confirmatory) as confirmatory 
 from trends1 
 where period = "current" 
 group by disease_code, disease, period; 
quit; 
proc transpose data=City1 out=City2; 
 by disease_code disease; 
 id period; 
 var count; 
run; 
data City2; 
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 merge City2 confirmatory1; 
 by disease_code disease; 
run; 
data City3;  
 set City2; 
 array xx  current p1 c1 s1 p2 c2 s2 p3 c3 s3 p4 c4 s4 p5 c5 s5; 
  do over xx;  
   if xx=. then xx=0; 
  end; 
 if current>0 then do;   
  mean=mean(p1,c1,s1,p2,c2,s2,p3,c3,s3,p4,c4,s4,p5,c5,s5);  
  sd=   std(p1,c1,s1,p2,c2,s2,p3,c3,s3,p4,c4,s4,p5,c5,s5);  
    if sd>0 then ratio= (current-mean)/sd; 
    if current >=mean+2*(sd) then significant=1;   
  else significant = 0; 
 end; 
 format mean 5.1; 
 format sd 5.2; 
 format ratio 5.2; 
 length geography $20.; 
 geography= 'City'; 
 geoUnit='City'; 
 metric='Diagnosis date'; 
run; 
 
** The equivalent analysis above is carried out at all geographic resolutions 
(in our case at Borough and UHF neighborhood); 
 
* merge significant signals at all geographic resolutions; 
data AllSignificant;  
 set City3 Boro3 UHF3; 
 /* only keep signals that are significant and that have at least 3 
 confirmed, probable, suspected, or pending events */ 
 if (confirmatory>2 & significant=1);  
 fsatDiag=&maxfsatDiag; 
 rundate=today(); 
 format fsatDiag rundate mmddyy10.; 
run; 
proc sort data=allsignificant; 
 by disease_code geography; 
run; 
 
* delete saved signals if the analysis is run multiple times on the same day; 
data signals.trends_signals; 
 set signals.trends_signals; 
 where rundate ~= date(); 
run; 
* create macro variable with the last time the analysis was run; 
proc sql noprint; 
 select max(rundate,date9.) 
 into :lastweek 
 from signals.trends_signals; 
quit; 
 
* save signal details datasets; 
proc append base=signals.trends_signals data=allsignificant; 



Publisher: CDC; Journal: Emerging Infectious Diseases 
Article Type: Research; Volume: 21; Issue: 2; Year: 2015; Article ID: 14-0098 

DOI: 10.3201/eid2102.140098; TOC Head: Dispatch 

Page 13 of 28 

run; 
 
* compare this week's signals with last week's signals in order to flag new 
signals; 
proc sort data = signals.trends_signals out = lastweek (keep=disease_code 
geography); 
 where rundate = input("&lastweek",date9.); 
 by disease_code geography; 
run; 
data Allsignificant_compare; 
 merge allsignificant (in=a) lastweek (in=b); 
 by disease_code geography; 
 if a; 
 if ~b then new = "*"; 
run; 
 
*-- Output the signal summary document; 
data health2; 
confidential="Please do not Distribute"; 
run; 
ods noresults; 
ods rtf file= "…\&fileweek\Weekly trends &fileweek..doc"; 
title1 'TO:  STAFF'; 
title2 'SUBJECT:    WEEKLY TRENDS'; 
title3 '                                                                                         
'; 
title4 'As always, comments and feedback much appreciated.'; 
title5 '                                                                                         
'; 
title6 'Thanks !'; 
proc print data=health2 noobs; 
var confidential; 
run; 
 
options orientation=landscape;  
proc print data=allsignificant_compare noobs label  ; 
var disease  geography confirmatory ratio new; 
label geography ='unit of geography'; 
label confirmatory ='Total dx past 4 weeks'; 
label ratio = "Signal Strength (# of SDs above mean)"; 
label new='* indicates new signal since last week'; 
title1 "Trends Report based on diagnosis date"; 
title2 ; 
title3 'The trends report compares the count of all cases (except contacts 
and possible exposures)'; 
title4 'diagnosed in the past 4 weeks to the mean and standard deviation of 
cases diagnosed'; 
title5 'during similar time periods in the past 5 years.'; 
title6 ; 
title7 "This report was created 
%sysfunc(left(%qsysfunc(date(),worddate18.)))";   
footnote1 font='Arial' height=1 "Total dx past 4 weeks includes only 
confirmed, probable, suspect and pending case statuses"; 
footnote2 font='Arial' height=1 "When # of SD's above mean > 2, current 
period is considered a signal"; 
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footnote3 font='Arial' height=1 "A missing signal strength value indicates an 
SD = 0 in the baseline period"; 
run; 
 
 
************************************************************; 
* The following code preps data for graphs of signals 
************************************************************; 
 
***** CITYWIDE *****; 
* fill in missing Saturdays with zeroes for all diseases; 
proc transpose data = current_data(rename=(events_adj=events)) out = trans; 
 by disease_code; 
 id fsatdiag; 
 var events; 
 format fsatdiag 8.; 
run; 
proc transpose data = trans out = trans2; 
 by disease_code; 
run; 
data collapsed_events_fillin; 
 set trans2; 
 if events = . then events = 0; 
 fsatdiag = input(substr(_name_,2),8.); 
 format fsatdiag mmddyy10.; 
 drop _name_; 
 if fsatdiag < date(); 
run; 
proc sort data = collapsed_events_fillin; by disease_code fsatdiag; run; 
* create a moving sum of events for the previous four weeks; 
data events_4wk_moving_sum; 
   set collapsed_events_fillin; 
   by disease_code; 
   retain num_sum 0; 
   if first.disease_code then do; 
     count=0; 
    num_sum=0; 
   end; 
   count+1; 
   last4=lag4(events); 
   if count gt 4 then num_sum=sum(num_sum,events,-last4); 
   else num_sum=sum(num_sum,events); 
 drop count last4; 
run; 
* append to adjusted 4-wk sum of event counts; 
data events_4wk_moving_sum; 
set events_4wk_moving_sum(where=(fsatdiag>&lastday_BL) drop=events) 
 signals.adjusted_baseline_city(rename=(num_sum_adj=num_sum) 
 keep=disease_code fsatdiag num_sum_adj); 
run; 
proc sort data = events_4wk_moving_sum; by disease_code fsatdiag; run; 
* pull signals for this week; 
proc sort data = AllSignificant out = trends_signals; 
 by disease_code fsatdiag; 
 where geography = "City"; 
run; 
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* merge signal data with event counts; 
data events_and_signals; 
 merge trends_signals events_4wk_moving_sum; 
 by disease_code fsatdiag; 
run; 
proc sort data = events_and_signals; 
 by disease_code fsatdiag rundate; 
run; 
* create a record for the current mean and low and high interval that the 
current count is being compared to; 
data reshape; 
 set events_and_signals; 
 where fsatdiag = &maxfsatdiag & mean ~= .; 
 yvar = mean; num_sum = current; output; 
 yvar = mean - sd; num_sum = .d; output; 
 yvar = mean + sd; num_sum = .d; output; 
run; 
* output the rest of the dataset (minus the current information); 
data therest; 
 set events_and_signals; 
 where (fsatdiag ~= &maxfsatdiag | mean = .) & fsatdiag >= (date()- 
  365*5-60); 
 yvar = .; 
 mean = .; 
 current = .; 
run; 
* append the current data to the rest of the data; 
proc append base = reshape data = therest; 
run; 
data reshape_city;  
 set reshape; 
 if &maxfsatDiag-365-7  <= fsatdiag <= &maxfsatDiag-365 then   
  period1=fsatdiag; 
 if &maxfsatDiag-730-7  <= fsatdiag <= &maxfsatDiag-730 then   
 period2=fsatdiag; 
 if &maxfsatDiag-365*3-7  <= fsatdiag <= &maxfsatDiag-365*3 then   
  period3=fsatdiag; 
 if &maxfsatDiag-365*4-7  <= fsatdiag <= &maxfsatDiag-365*4 then   
  period4=fsatdiag; 
 if &maxfsatDiag-365*5-7  <= fsatdiag <= &maxfsatDiag-365*5 then   
  period5=fsatdiag; 
 geounit = "City"; 
 geog = "NYC"; 
run; 
* sort for graphing; 
proc sort data = reshape_city(keep=disease_code geounit geog fsatdiag num_sum 
 current yvar mean period:); 
 by disease_code fsatdiag; 
run; 
 
** The equivalent analysis above is carried out at all geographic resolutions 
(in our case at Borough and UHF neighborhood); 
 
* append all geographic levels; 
data reshape_all; 
 length geog $50.; 
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 set reshape_city reshape_boro reshape_uhf; 
run; 
 
 
************************************************************; 
* The following code preps data for table 2 in the linelist reports; 
************************************************************; 
 
***** CITYWIDE *****; 
* pull in raw data going back 5 years; 
proc sql; 
 create table raw_data as 
 select disease_code, disease, fsatdiag, count(event_id) as events 
 from event_level_input 
 where disease_status in ("CONFIRMED","PROBABLE","SUSPECT") 
 group by disease_code, disease, fsatdiag 
 order by disease_code, disease, fsatdiag; 
quit; 
* reshape to fill in all dates for all diseases; 
proc transpose data = raw_data out = trans; 
 by disease_code disease; 
 id fsatdiag; 
 var events; 
 format fsatdiag 8.; 
run; 
proc transpose data = trans out = trans2; 
 by disease_code disease; 
run; 
data raw_data_fillin; 
 set trans2; 
 if events = . then events = 0; 
 fsatdiag = input(substr(_name_,2),8.); 
 format fsatdiag mmddyy10.; 
 drop _name_; 
run; 
proc sort data = raw_data_fillin; by disease_code disease fsatdiag; run; 
* save current week's dates for labels in output document; 
proc sql noprint; 
 select put(max(fsatdiag),date8.), put(max(fsatdiag)-27,date8.) 
 into :weekmax, :weekmin 
 from raw_data_fillin 
quit; 
* merge current data with baseline data and categorize weeks into relevant 
time periods for analysis; 
data raw_city;  
 set raw_data; 
 length week $50.; 
 if events = . then events = 0; 
 year = cat("year",put(year(fsatdiag),$4.)); 
 if (fsatdiag >= (date()-27) & fsatdiag <= (date()-21)) |  
  (fsatdiag >= (date()-365-27) & fsatdiag <= (date()-365-21)) | 
  (fsatdiag >= (date()-365*2-27) & fsatdiag <= (date()-365*2-21)) | 
  (fsatdiag >= (date()-365*3-27) & fsatdiag <= (date()-365*3-21)) | 
  (fsatdiag >= (date()-365*4-27) & fsatdiag <= (date()-365*4-21)) | 
  (fsatdiag >= (date()-365*5-27) & fsatdiag <= (date()-365*5-21))  
  then week='3 weeks ago'; 
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 if (fsatdiag >= (date()-20) & fsatdiag <= (date()-14)) |  
  (fsatdiag >= (date()-365-20) & fsatdiag <= (date()-365-14)) | 
  (fsatdiag >= (date()-365*2-20) & fsatdiag <= (date()-365*2-14)) | 
  (fsatdiag >= (date()-365*3-20) & fsatdiag <= (date()-365*3-14)) | 
  (fsatdiag >= (date()-365*4-20) & fsatdiag <= (date()-365*4-14)) | 
  (fsatdiag >= (date()-365*5-20) & fsatdiag <= (date()-365*5-14))  
  then week='2 weeks ago'; 
 if (fsatdiag >= (date()-13) & fsatdiag <= (date()-7)) |  
  (fsatdiag >= (date()-365-13) & fsatdiag <= (date()-365-7)) | 
  (fsatdiag >= (date()-365*2-13) & fsatdiag <= (date()-365*2-7)) | 
  (fsatdiag >= (date()-365*3-13) & fsatdiag <= (date()-365*3-7)) | 
  (fsatdiag >= (date()-365*4-13) & fsatdiag <= (date()-365*4-7)) | 
  (fsatdiag >= (date()-365*5-13) & fsatdiag <= (date()-365*5-7))  
  then week='1 week ago'; 
 if (fsatdiag >= (date()-6) & fsatdiag <= (date())) |  
  (fsatdiag >= (date()-365-6) & fsatdiag <= (date()-365)) | 
  (fsatdiag >= (date()-365*2-6) & fsatdiag <= (date()-365*2)) | 
  (fsatdiag >= (date()-365*3-6) & fsatdiag <= (date()-365*3)) | 
  (fsatdiag >= (date()-365*4-6) & fsatdiag <= (date()-365*4)) | 
  (fsatdiag >= (date()-365*5-6) & fsatdiag <= (date()-365*5))  
  then week='Most recent week'; 
 if week ~= ""; 
run; 
proc sort data = raw_city; by disease_code disease week year; run; 
proc transpose data = raw_city out = trans; 
 by disease_code disease week; 
 var events; 
 id year; 
run; 
proc transpose data = trans out = trans2 (rename=(_name_=year1)); 
 by disease_code disease week; 
run; 
proc sort data = trans2; by disease_code disease year1; run; 
proc transpose data = trans2 out = final_city (drop=_name_); 
 by disease_code disease year1; 
 var events; 
 id week; 
run; 
data final_city2; 
 retain disease_code disease geog year _3_weeks_ago _2_weeks_ago   
  _1_week_ago Most_recent_week; 
 set final_city; 
 array weeks _3_weeks_ago _2_weeks_ago _1_week_ago Most_recent_week;  
 do over weeks; 
  if weeks = . then weeks = 0; 
 end; 
 length year $30.; 
 year = cat(substr(year1,5)," Conf/Prob/Susp"); 
 geog = "NYC"; 
 label _3_weeks_ago = "4 weeks ago"; 
 label _2_weeks_ago = "3 weeks ago"; 
 label _1_week_ago = "2 weeks ago"; 
 label Most_recent_week = "Most recent week (Sun-Sat)"; 
 drop year1; 
run; 
proc sql;  
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 create table alldiseases as select distinct disease_code, disease,  
  max(substr(year,1,4)) as year2 
 from final_city2 group by disease_code order by disease_code;  
quit; 
 
* count pending separately; 
proc sql; 
 create table raw_pending as 
 select disease_code, disease, fsatdiag, count(event_id) as pending 
 from event_level_input 
 where disease_status = "PENDING" & year(fsatdiag) = year(date()) 
 group by disease_code, disease, fsatdiag 
 order by disease_code, disease, fsatdiag; 
quit; 
* reshape to fill in all dates for all diseases; 
proc transpose data = raw_pending out = trans; 
 by disease_code disease; 
 id fsatdiag; 
 var pending; 
 format fsatdiag 8.; 
run; 
proc transpose data = trans out = trans2; 
 by disease_code disease; 
run; 
data raw_pending_fillin; 
 set trans2; 
 if pending = . then pending = 0; 
 fsatdiag = input(substr(_name_,2),8.); 
 format fsatdiag mmddyy10.; 
 drop _name_; 
run; 
proc sort data = raw_pending_fillin; by disease_code disease fsatdiag; run; 
* merge current data with baseline data and categorize weeks into relevant 
time periods for analysis; 
data raw_city_pending;  
 set raw_pending_fillin; 
 length week $50.; 
 if pending = . then pending = 0; 
 year = cat("year",put(year(fsatdiag),$4.)); 
 if (fsatdiag >= (date()-27) & fsatdiag <= (date()-21)) |  
  (fsatdiag >= (date()-365-27) & fsatdiag <= (date()-365-21)) | 
  (fsatdiag >= (date()-365*2-27) & fsatdiag <= (date()-365*2-21)) | 
  (fsatdiag >= (date()-365*3-27) & fsatdiag <= (date()-365*3-21)) | 
  (fsatdiag >= (date()-365*4-27) & fsatdiag <= (date()-365*4-21)) | 
  (fsatdiag >= (date()-365*5-27) & fsatdiag <= (date()-365*5-21))  
  then week='3 weeks ago'; 
 if (fsatdiag >= (date()-20) & fsatdiag <= (date()-14)) |  
  (fsatdiag >= (date()-365-20) & fsatdiag <= (date()-365-14)) | 
  (fsatdiag >= (date()-365*2-20) & fsatdiag <= (date()-365*2-14)) | 
  (fsatdiag >= (date()-365*3-20) & fsatdiag <= (date()-365*3-14)) | 
  (fsatdiag >= (date()-365*4-20) & fsatdiag <= (date()-365*4-14)) | 
  (fsatdiag >= (date()-365*5-20) & fsatdiag <= (date()-365*5-14))  
  then week='2 weeks ago'; 
 if (fsatdiag >= (date()-13) & fsatdiag <= (date()-7)) |  
  (fsatdiag >= (date()-365-13) & fsatdiag <= (date()-365-7)) | 
  (fsatdiag >= (date()-365*2-13) & fsatdiag <= (date()-365*2-7)) | 
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  (fsatdiag >= (date()-365*3-13) & fsatdiag <= (date()-365*3-7)) | 
  (fsatdiag >= (date()-365*4-13) & fsatdiag <= (date()-365*4-7)) | 
  (fsatdiag >= (date()-365*5-13) & fsatdiag <= (date()-365*5-7))  
  then week='1 week ago'; 
 if (fsatdiag >= (date()-6) & fsatdiag <= (date())) |  
  (fsatdiag >= (date()-365-6) & fsatdiag <= (date()-365)) | 
  (fsatdiag >= (date()-365*2-6) & fsatdiag <= (date()-365*2)) | 
  (fsatdiag >= (date()-365*3-6) & fsatdiag <= (date()-365*3)) | 
  (fsatdiag >= (date()-365*4-6) & fsatdiag <= (date()-365*4)) | 
  (fsatdiag >= (date()-365*5-6) & fsatdiag <= (date()-365*5))  
  then week='Most recent week'; 
 if week ~= "";run; 
proc sort data = raw_city_pending; by disease_code disease week year; run; 
proc transpose data = raw_city_pending out = trans; 
 by disease_code disease week; 
 var pending; 
 id year; 
run; 
proc transpose data = trans out = trans2 (rename=(_name_=year1)); 
 by disease_code disease week; 
run; 
proc sort data = trans2; by disease_code disease year1; run; 
proc transpose data = trans2 out = final_city_pending (drop=_name_); 
 by disease_code disease year1; 
 var pending; 
 id week; 
run; 
data final_city_pending2; 
 retain disease_code disease geog year _3_weeks_ago _2_weeks_ago   
  _1_week_ago Most_recent_week; 
 merge final_city_pending alldiseases; 
 by disease_code disease; 
 array weeks _3_weeks_ago _2_weeks_ago _1_week_ago Most_recent_week;  
 do over weeks; 
  if weeks = . then weeks = 0; 
 end; 
 length year $30.; 
 if year1 ~= "" then year = cat(substr(year1,5)," Pending"); 
 else year = cat(strip(year2)," Pending"); 
 geog = "NYC"; 
 drop year1 year2; 
 if ~(_3_weeks_ago=0 & _2_weeks_ago=0 & _1_week_ago=0 &    
  Most_recent_week=0); 
run; 
data final_city; 
 set final_city2 final_city_pending2; 
run; 
proc sort data = final_city; by disease_code disease geog descending year; 
run; 
 
** The equivalent code above is carried out at all geographic resolutions (in 
our case at Borough and UHF neighborhood); 
 
data final_freqs; 
 retain disease_code disease geog year _3_weeks_ago _2_weeks_ago   
  _1_week_ago Most_recent_week; 
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 length geog $50.; 
 set final_city final_boro final_uhf; 
 Total = _3_weeks_ago + _2_weeks_ago + _1_week_ago + Most_recent_week; 
run; 
 
 
************************************************************; 
* This code creates output reports with signal details; 
************************************************************; 
 
* create folders for output to be saved; 
options noxwait; 
x "cd ...\&fileweek\"; 
x "md Linelist";  
x "cd ...\&fileweek\Linelist"; 
x "md Lab_Results"; 

*-- signals by city, boro and uhf; 
%macro rollup(level=,merge=); 
proc sql noprint; 
 create table signals_&level as 
 select * 
 from allsignificant 
 where geounit="&level"; 
quit; 
 
*-- linelist by city, boro and uhf; 
* while the analysis is based on all disease statuses, only confirmatory 
cases are printed in the linelist; 
proc sort data = signals_&level (keep=&merge geography metric confirmatory 
 mean sd ratio rate); by &merge; run; 
proc sort data = event_level_input out = event_level_input2 
 (keep=event_id disease_code disease patinit disease_status    
  investigation_status diagnosis_date gender  
  age_years street_1 boro zip uhfname x_coord y_coord);  
 by &merge;  
 where fsatdiag >= (&maxfsatdiag-22) & fsatdiag <= &maxfsatdiag &   
  disease_status in("CONFIRMED","PROBABLE","SUSPECT","PENDING"); 
run; 
data linelist_&level; 
 merge signals_&level (in=insignals) event_level_input2; 
 by &merge; 
 if insignals; 
 level = "&level"; 
run; 
%mend rollup; 
%rollup(level=City,merge=disease_code); 
%rollup(level=Boro,merge=disease_code boro); 
%rollup(level=UHF,merge=disease_code uhfname); 
* save events included in signals to permanent file for future references; 
data signals.linelist_&fileweek; 
 set linelist_city linelist_boro linelist_uhf; 
 keep disease_code event_id geography; 
run; 
 
* annotation for map; 
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data signals; 
 length function style color $ 8 text $ 20 geocode $ 3; 
 retain xsys ysys '2' hsys '3' when 'a'; 
 set linelist_boro linelist_city linelist_uhf; 
 x = input(x_coord,12.); 
 y = input(y_coord,12.); 
 function='label'; style='arial'; text='+'; size=1.5; color = "red"; 
 if level = "UHF" then geog = uhfname; 
 if level = "Boro" then geog = boro; 
 if level = "City" then geog = "NYC"; 
 if x = . & y = . then geocode = "no"; 
 else geocode = "yes"; 
run; 
proc sort data = signals; by disease_code geography diagnosis_date event_id; 
run; 
* add a count variable to number each case within each signal; 
data signals; 
 set signals; 
 count + 1; 
 by disease_code geography; 
 if first.disease_code | first.geography then count = 1; 
 text = strip(put(count,$3.)); 
run; 
* merge this week's linelist with last week's linelist to identify new cases 
in signals that existed in the prior week; 
proc sort data = signals.linelist_&lastweek out = lastweek; by disease_code 
 geography event_id; run; 
proc sort data = signals; by disease_code geography event_id; run; 
data signals; 
 merge lastweek (in=a) signals (in=b); 
 by disease_code geography event_id;  
 if b; 
 if b & ~a then new = "*"; 
 if b & ~a then newnum = 1; 
 else newnum = 0; 
run; 
proc sort data = signals; by disease_code geography diagnosis_date; run; 
 
* create macro variables to facilitate looping through signals below; 
proc sort data = allsignificant_compare (keep=disease_code disease geounit 
boro uhfname new) out = mapsignificant; by disease_code disease geounit boro 
uhfname; run; 
data _null_; 
 set mapsignificant; 
 length geog $42.; 
 by disease_code disease geounit boro uhfname; 
 geog = boro; 
 if geog = "" then geog = uhfname; 
 if geounit="City" then geog = "NYC"; 
 where ~(geounit="Boro" & boro in("UNKNOWN" "")); 
 if first.disease | first.geounit | first.boro | first.uhfname then do; 
  i+1; 
  ii=left(put(i,20.)); 
  call symputx ('disease'||ii,strip(disease)); 
  call symputx ('diseasecode'||ii,strip(disease_code)); 
  call symputx ('geounit'||ii,strip(geounit)); 
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  call symputx ('geog'||ii,strip(geog)); 
  call symputx ('geog2'||ii,substr(strip(geog),1,3)); 
  call symputx ('total',put(ii,20.)); 
  call symputx ('new'||ii,strip(new)); 
 end; 
run; 
 
*-- create summary dataset for choropleth map; 
* read in shapefile; 
proc mapimport datafile=…/Maps/zip_code_areas_w_uhf.shp' out = uhfmap;  
run; 
data uhfpop; 
 set /* read in a dataset with each geographic unit in map and the  
  corresponding population */; 
run; 
* calculate the number of events in the last four weeks without missing zip 
code by disease and geographic unit; 
proc sql; 
 create table disease_summ as 
 select disease_code, disease, input(uhfcode,3.) as uhfcode, count(*) as 
  reports 
 from event_level_input2 
 where (disease_status in("PENDING","CONFIRMED","PROBABLE","SUSPECT") &  
  year(fsatdiag) = year(date()) & week(fsatdiag) < week(date()) &  
  week(fsatdiag) >= week(date()) - 4 & zip ~= "")  
 group by uhfcode, disease_code, disease 
 order by uhfcode, disease_code, disease; 
quit; 
* calculate rates by geographic unit for mapping; 
data disease_summ_rates; 
 merge disease_summ(in=indisease) uhfpop(in=inuhfpop); 
 by uhfcode; 
 if indisease & inuhfpop & census_pop ~= 0; 
 rate = round((reports / census_pop) * 100000,.01); 
run; 
 
* loop through signals to create a report for each one; 
%macro linelist; 
%do i=1 %to &total; 
* subset datasets to the relevant information for each signal; 
data &&diseasecode&i; 
   set disease_summ_rates; 
   where disease = "&&disease&i"; 
run; 
data signals&i; 
   set signals; 
   where disease = "&&disease&i" & level = "&&geounit&i" & geog = 
 "&&geog&i"; 
run; 
data final_freqs_&i; 
   set final_freqs; 
   where disease = "&&disease&i" & geog = "&&geog&i"; 
run; 
* summary data for first page; 
proc sql; 
  create table signals2_&i as 



Publisher: CDC; Journal: Emerging Infectious Diseases 
Article Type: Research; Volume: 21; Issue: 2; Year: 2015; Article ID: 14-0098 

DOI: 10.3201/eid2102.140098; TOC Head: Dispatch 

Page 23 of 28 

  select distinct disease, geography, metric, confirmatory, mean,  
   sd,ratio, rate, cityrate, count(new) as new_count,   
   min(newnum) as new_signal 
  from signals&i 
  group by disease, geography, metric; 
 quit; 
 proc format; value na .="N/A"; run; 
 data signals2_&i; 
  length new_signal2 $3.; 
  set signals2_&i; 
  if new_signal = 1 then new_signal2 = "yes"; 
  else new_signal2 = "no"; 
  if new_signal2 = "yes" then new_count = .; 
  format new_count na.; 
 run; 
 
 ods noresults; 
 options orientation=landscape; 
 * output results to Linelist folder; 
 ods rtf            
 file="...\&fileweek\Linelist\weeklylinelist_&&disease&i.._&&geog&i...rt
 f" bodytitle; 
 
 * PAGE 1 - summary of signal; 
 title "&&disease&i"; 
 title2 "&&geounit&i Signal in &&geog&i"; 
 footnote1 font='Arial' height=1 "Total dx past 4 weeks includes only  
  confirmed, probable, suspect and pending case statuses"; 
 footnote2 font='Arial' height=1 "When # of SDs above mean > 2, current  
  period is considered a signal"; 
 footnote3 font='Arial' height=1 "A missing signal strength value   
  indicates an SD = 0 in the baseline period"; 
 ods proclabel="&&geounit&i Signal in &&geog&i"; 
 proc report data=signals2_&i nowd style(report)={outputwidth=7in   
  font_size=10pt};         
  columns disease geography metric confirmatory ratio new_signal2  
   new_count rate cityrate; 
  define disease/display "Disease" width=20; 
  define geography/display "Unit of geography" width=20; 
  define metric/display "Date of interest" width=20; 
  define confirmatory/display "Total dx past 4 weeks: &weekmin -  
   &weekmax" width=20; 
  define ratio/display "Signal Strength (# of SDs above mean)"  
   width=10; 
  define new_signal2/display "new signal since last week?"   
   width=10; 
  define new_count/display "if not new, how many new events in  
   signal?" width=15; 
 run; 
 
 * PAGE 2 - raw counts; 
 footnote1 font='Arial' height=1 "Unadjusted counts of cases by year,  
  week and case status"; 
 footnote2; 
 proc report data=final_freqs_&i nowd style(report)={outputwidth=7in}; 
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  columns year Most_recent_week _1_week_ago _2_weeks_ago   
  _3_weeks_ago Total; 
 run; 
   
 * PAGE 3 - map; 
 * subset signals dataset to those that are not missing x and y   
  coordinates for mapping; 
 data nomiss_signals&i; 
  set signals&i; 
  where x ~= . & y ~= .; 
 run; 
 footnote1; 
 pattern1 v=s c=grayff; 
 pattern2 v=s c=graydd; 
 pattern3 v=s c=graybb; 
 pattern4 v=s c=gray88; 
 pattern5 v=s c=gray66; 
 goptions reset=goptions device=png300 target=png300 ftext='Arial'  
  htext=1 ftitle='Arial/bold' htitle=1.5 xmax=9 in ymax=7 in;  
 legend1 label= (j=l font='Arial/bold' 'Rate per 100,000 for previous 4  
  wks'  
   j=l font='Arial' '*Numbers indicate the location of events in the  
  signal.' 
   j=l '*Note that rates are meant to provide context only and do' 
   j=l '      not necessarily correspond to signals.' 
   position=(top left)) across=1 down=5 frame position=(bottom outside); 
 proc gmap data = &&diseasecode&i map = uhfmap anno=nomiss_signals&i; 
   id uhfcode; 
   choro rate / levels=5 coutline=black legend=legend1 cdefault=white; 
 run; 
 quit; 
 
 * PAGE 4 - line list; 
 ods proclabel="Line List"; 
 * if the signal is not new, include an extra column to indicate which 
  events are newly added to the repeated signal; 
 %if "&&new&i" = "" %then %do; 
 proc report data=signals&i nowd; 
    columns new text event_id patinit disease_status   
   investigation_status diagnosis_date gender age_years   
   street_1 boro zip uhfname geocode; 
    define new/ display "New" width=1; 
    define text/ display "#" width=2; 
    define event_id/ display "Event ID" width=10; 
    define patinit/display "Pat. Init." width=2; 
    define disease_status/display "Disease Status" width=4; 
    define investigation_status/display "Investigation Status"   
   width=4; 
    define diagnosis_date/display "Diagnosis Date" width=10; 
    define gender/display "Gender" width=1; 
    define age_years/display "Age" width=3; 
    define street_1/display "Address" width=10; 
    define boro/display "Boro" width=12; 
    define zip/display "Zip" width=5; 
    define uhfname/display "UHF" width=10; 
    define geocode/display "Geocode" width=3; 
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 run; 
 %end; 
 %if "&&new&i" = "*" %then %do; 
 proc report data=signals&i nowd; 
  columns text event_id patinit disease_status investigation_status 
   diagnosis_date gender age_years street_1 boro zip uhfname  
   geocode; 
  define text/ display "#" width=2; 
  define event_id/ display "Event ID" width=10; 
  define patinit/display "Pat. Init." width=2; 
  define disease_status/display "Disease Status" width=4; 
  define investigation_status/display "Investigation Status"   
   width=4; 
  define diagnosis_date/display "Diagnosis Date" width=10; 
  define gender/display "Gender" width=1; 
  define age_years/display "Age" width=3; 
  define street_1/display "Address" width=10; 
  define boro/display "Boro" width=12; 
  define zip/display "Zip" width=5; 
  define uhfname/display "UHF" width=15; 
  define geocode/display "Geocode" width=3; 
 run;   
 %end; 
  
 * PAGE 6 - graph; 
 proc sql; 
  create table graphit as 
  select * 
  from reshape_all 
  where disease_code="&&diseasecode&i" and geounit="&&geounit&i"  
   and geog="&&geog&i";  
* allow axes to be flexible depending on counts; 
 proc sql noprint; 
  select max(num_sum), min(min(yvar,num_sum)), max(fsatdiag)   
   format=mmddyy10., max(period1), max(period2), max(period3), 
   max(period4), max(period5) 
  into :maxsignal, :minsignal, :maxweek, :period1, :period2,   
   :period3, :period4, :period5 
  from graphit; 
 quit; 
 data _null_; 
    if &maxsignal.<=10 then do; maxaxis=10; intaxis=1; end; 
      else if 10<&maxsignal.<=25 then do; maxaxis=25; intaxis=5; end; 
      else if 25<&maxsignal.<=50 then do; maxaxis=50; intaxis=5; end; 
    else if 50<&maxsignal.<=100 then do; maxaxis=100; intaxis=10;  
   end; 
    else if 100<&maxsignal.<=500 then do; maxaxis=500; intaxis=50;  
   end; 
    else if 500<&maxsignal.<=1000 then do; maxaxis=1000;   
   intaxis=100; end; 
    else if 1000<&maxsignal.<=1500 then do; maxaxis=1500;   
   intaxis=150; end; 
    else if 1500<&maxsignal.<=2000 then do; maxaxis=2000;   
   intaxis=200; end; 
    else if 2000<&maxsignal.<=2500 then do; maxaxis=2500;   
   intaxis=250; end; 
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    else if 2500<&maxsignal.<=3000 then do; maxaxis=3000;   
   intaxis=300; end; 
      else if 3000<&maxsignal.<=3500 then do; maxaxis=3500;   
   intaxis=350; end; 
    else if 3500<&maxsignal.<=4000 then do; maxaxis=4000;   
   intaxis=400; end; 
    else if 4000<&maxsignal.<=4500 then do; maxaxis=4500;   
   intaxis=450; end; 
    else if 4500<&maxsignal.<=5000 then do; maxaxis=5000;   
   intaxis=500; end; 
    if &minsignal.<0 & &minsignal>-1 then do; minaxis=-1; end; 
    else if &minsignal.<-1 & &minsignal>-5 then do; minaxis=-5;  
   end; 
    else minaxis = 0; 
 %global maxaxis intaxis; 
   call symput('minaxis',minaxis); 
   call symput('maxaxis',maxaxis);  
   call symput('intaxis',intaxis);  
 run; 
 symbol1 i=hiloctj color=blue line=2; 
 symbol2 i=none color=blue value=dot height=1.5; 
 symbol3 i=l color=black value=none height=1.5; 
 symbol4 i=none color=red value=dot height=1.5; 
 legend1 label=none order=("mean" "current" "num_sum") 
  value=(h=2 pct f=simplex j=c c=black 'Mean +/- 2 SD' 'Signal'  
  'Moving 4-Week Sum'); 
 axis1 label=none color=black 
     value=(h=2 pct f=simplex j=c c=black)     
  order=(&minaxis. to &maxaxis. by &intaxis.)  
  reflabel=(color=black) 
  width=1 
  length=75 pct 
  major=none minor=none; 
 axis2 label=none color=black 
     value=(h=2 pct f=simplex j=c c=black) 
  reflabel=(color=black) 
  width=1 
  major=(number=6) minor=(number=12); 
 goptions reset=goptions device=png300 target=png300 ftext='Arial'  
  htext=1 ftitle='Arial/bold' htitle=1.5 xmax=10 in ymax=6.5 in;  
 proc gplot data=graphit; 
  title "&&disease&i"; 
  title2 "&&geounit&i Signal in &&geog&i"; 
  title3 height=1.05 "Moving 4-wk sum of adjusted case counts  
   ending &maxweek"; 
  plot (yvar mean num_sum current)*fsatdiag / cframe=GWH autovref  
   cvref=wh overlay skipmiss vaxis=axis1 haxis=axis2   
   legend=legend1 lhref=2 chref=stro href=&period1 &period2  
   &period3 &period4 &period5; 
  footnote1 height=0.75 "Disease status includes all except Contact 
   and Possible Exposure"; 
  footnote3 height=0.75 "Vertical dotted lines represent   
   corresponding 4-wk periods in baseline"; 
 run; 
 quit; 
 ods rtf close; 
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%end; 
%mend; 
%linelist; 
 
 
************************************************************; 
* The following code emails signal information to reviewers. 
************************************************************; 
 
* read in list of email recipients by disease; 
proc import datafile = "…\Data\reviewers.xls" out = reviewers replace dbms = 
 excel; run; 
* merge with signal information; 
proc sql noprint;  
create table signals_reviewer as 
select distinct s.disease_code 
 ,s.disease 
 ,propcase(s.geog) as geography 
 ,count(*) as cases_in_signal 
 ,case (min(s.newnum)) when 0 then 'No' else 'Yes' end as new_signal 
 ,case (min(s.newnum)) when 0 then count(s.new) else . end as new_cases 
 ,p.notes as REVIEWER label='' 
from signals as s left join reviewers as p on s.disease_code=p.code 
where s.suppress = 'no' 
group by s.disease_code, s.geography 
order by p.notes; 
quit; 
 
* create macro to send emails; 
%macro email; 
data _null_; 
set signals_reviewer; 
by reviewer; 
if first.reviewer then do; 
  i+1; 
  call symputx('reviewer'||left(put(i,2.)),reviewer); 
  call symputx('end',left(put(i,2.))); 
end; 
run; 
* loop through reviewers to send all signal information in one email; 
%do i=1 %to &end; 
 data reviewer&i; 
  set signals_reviewer; 
  where reviewer = "&&reviewer&i"; 
 run; 
* &name macro set at beginning of code by whoever is running it; 
FILENAME outbox EMAIL 
                from= "&name@health.nyc.gov"                                                                                                        
    to=(&&reviewer&i)  
    cc=("&name@health.nyc.gov")  
    subject="Maven: AOW Signals for &fileweek"   
      type='text/html' 
                CT ='text/html'; 
ods html body=outbox style=minimal; 
ods escapechar='^'; 
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ods text = "^{style [just=l]AOW Signals for &fileweek}"; 
* print summary table of signals in body of email; 
proc report data=reviewer&i nowd nocenter spacing=5; 
 columns disease geography cases_in_signal new_signal new_cases; 
 define disease/display "Disease" ;  
 define geography/display "Geography" ; 
 define cases_in_signal/display "total dx past 4 weeks" ; 
 define new_signal/display "new signal since last week?" ; 
 define new_cases/display "if not new, how many new events in signal?" ; 
 title; 
 footnote; 
run; 
* print link to line lists in body of email; 
ods text = "^{style [just=l]Signal details and the linelists are here: }"; 
ods html text = "^{style [just=l] …\&fileweek\Linelist\ }"; 
ods text = "^{style [just=l] If you have questions, notify the analyst.}"; 
ods html close; 
%end;  
%mend; 
 
%email; 
 
 
 

 


