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was the same genome type as and was highly homologous 
with the H5N6 virus in Laos. The findings in this study are 
also supported by the previous genetic characterization of 
these viruses by Wong et al. (11). However, the adaptation, 
host range, and virulence of this reassortant H5N6 virus are 
still unclear and should be further investigated. Furthermore, 
the potential for infection, outbreaks, and pandemic in other 
poultry and mammals should be carefully monitored.
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To the Editor: Prokaryotes typically have a single cir-
cular chromosome. However, some bacteria have >1 chro-
mosome. Vibrio bacteria, for example, have 2 circular chro-
mosomes: 1 (Ch1) and 2 (Ch2) (1–3). Most recognizable 
genes responsible for essential cell functions and pathoge-
nicity are located on Ch1. Ch2 is also thought to encode 
some genes essential for normal cell function and those 
associated with virulence. Both chromosomes are con-
trolled coordinately in their replication and segregation (4). 
Evidence suggests that Ch2 was originally a mega-plasmid 
captured by an ancestral Vibrio species (2,5). We report the 
characterization of recent isolates of V. cholerae O1 from 
Thailand that carry a novel gigantic replicon (Rep.3) in ad-
dition to Ch1 and Ch2.

Cholera outbreaks occurred in Tak Province, Thailand, 
during March–December 2010. We obtained 118 isolates of 
V. cholerae O1 and subjected their NotI digests to pulsed-
field gel electrophoresis (PFGE), which differentiated the 
isolates into 8 different patterns (6). The profile of PFGE type 
A6 was identical to that of PFGE type A4, except that a large 
DNA band existed in type A6. The PFGE profile of the intact 
(undigested) DNA of the type A6 isolates exhibited a unique 
genome structure consisting of 3 large replicons (Figure, 
http://wwwnc.cdc.gov/EID/article/21/7/14-1055-F1.htm).

Three isolates of PFGE type A6 (TSY216, TSY241, 
and TSY421) were obtained during June 3–July 5, 2010, 
from 3 unrelated residents of a village near the Thailand–
Myanmar border. The isolates were classified as multilocus 
variable-number tandem-repeat analysis type 16, suggest-
ing that they are of clonal origin (6). Next, we performed 
whole-genome sequencing of TSY216, as a representative 
of PFGE type A6 isolates, by using the GS FLX Titanium 



system (8 kb–span paired-end library; Roche, Indianapo-
lis, IN, USA). Using Newbler version 2.6, the Roche 454 
GS De Novo Assembler software (454 Life Sciences, 
Branford, CT, USA), we assembled 424,273 reads into 3 
large scaffolds comprising 119 contigs at 18.3-fold cover-
age. The gaps between contigs were closed by PCR, and 
the PCR products were then sequenced. Illumina sequence 
data (Illumina, Inc., San Diego, CA, USA) were used to 
improve low-quality regions. The whole-genome sequence 
of TSY216 was completed and deposited in GenBank (ac-
cession nos. CP007653–55).

Full-genome sequencing revealed that V. cholerae 
O1 El Tor TSY216 consists of 3 circular replicons, Ch1 
(3,053,204 bp), Ch2 (1,051,284 bp), and Rep.3 (896,006 bp), 
with an average G+C content of 47.7%, 47.0%, and 37.3%, 
respectively. In total, 4,579 coding sequences were detected 
and annotated by using the National Center for Biotechnol-
ogy Information Prokaryotic Genome Annotation Pipeline  
(http://www.ncbi.nlm.nih.gov/genome/annotation_prok/). 
The whole-genome comparison between 2010EL-1786 
(an outbreak isolate from Haiti) (7) and TSY216 revealed 
that Ch1 and Ch2 shared nearly identical gene content and 
showed conserved synteny, but integrative and conjuga-
tive elements were distinguishable. Strain TSY216 carries 
CTX-3, whereas strain 2010EL-1786 possesses CTX-3b. 
These CTXs represent wave 3 of the seventh cholera pan-
demic (8). Rep.3 of TSY216 did not share a conserved re-
gion with Ch1 and Ch2. Thus, this replicon may have been 
gained fairly recently through horizontal gene transfer from 
unknown organisms.

Rep.3 encodes 999 coding sequences and 66 transfer 
RNAs, among which 39 have been assigned putative func-
tions and 960 encode hypothetical proteins and proteins of 
unknown function. The origin of the replicon could not be 
traced from the coding sequences in the public databases. 
Of note, Rep.3 encodes a specific transfer RNA for each 
amino acid, for a total of 20 amino acids. In addition, Rep.3 
carries 2 genes encoding the histone-like nucleoid-structur-
ing protein. In this regard, a 165-kb plasmid, pSf-R27, in 
Shigella flexneri encodes a histone-like nucleoid-structur-
ing protein that was claimed to be a transcriptional repres-
sor of the plasmid (9). Rep.3 may have a stealth strategy 
similar to that of pSf-R27.

We assessed the stability of the Rep.3 of the 3 A6 iso-
lates. In total, 96 colonies for the 3 isolates were subcul-
tured each day for 30 consecutive days. Then, using PCR 
and PFGE, we determined whether Rep.3 remained in the 
96 subcultures. The Rep.3-specific primer set (Rep3hns-
F: 5′-TTCAATGCGTCCAGCGTTGC-3′ and Rep3hns-R: 
5′-TCGCACCTCTATCAATAGCC-3′) for PCR was de-
signed for detection of the histone-like nucleoid-structuring 
protein gene encoded on the third replicon. All subcultures 
maintained Rep.3 in an unchanged state. However, when 

the organisms were cultured at 42°C, ≈70% of the subcul-
tures lost Rep.3. The growth rates of the organisms with 
and without Rep.3 showed no substantial difference when 
the organisms were cultured in Luria-Bertani medium  
at 37°C.

The appearance of V. cholerae O1 variants with addi-
tional circular replicons may contribute to evolution of the 
bacteria in unexpected manners. Clones from the seventh 
cholera pandemic, which began in 1961, share nearly iden-
tical gene content (8,10). However, some clones, such as 
TSY216, can gain a replicon of megabase class and main-
tain it stably. Eventually, epidemic V. cholerae O1 may gain 
the ability to incorporate genes that change properties such 
as antigenicity or pathogenicity. The function of Rep.3 re-
mains under investigation.
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