Acknowledgments
We thank the members of J.F.’s laboratory at Northeast Normal University for their help and support.

Financial support was provided by the National Science Foundation (NSF) East Asian Pacific Summer Institute program IIA-1415092, NSF grant DEB-1115895 and DEB-1336290, National Speleological Society Rapid Response Fund, US Fish and Wildlife Service, National Science and Technology Foundation grant no. 2013FY113600, The Robert and Patricia Switzer Foundation, and the crowd-funding platform of Experiment.com.

References

New Clinical Strain of Neisseria gonorrhoeae with Decreased Susceptibility to Ceftriaxone, Japan

Takashi Deguchi,1 Mitsuru Yasuda,1 Kyoko Hatazaki,1 Koji Kameyama, Kengo Horie, Taku Kato, Kohsuke Mizutani, Kensaku Seike, Tomohiro Tsuchiya, Shigeaki Yokoi, Masahiro Nakano, Mutsumasa Yoh

Author affiliations: Gifu University, Gifu, Japan (T. Deguchi, M. Yasuda, K. Hatazaki, K. Kameyama, K. Horie, T. Kato, K. Mizutani, K. Seike, T. Tsuchiya, S. Yokoi, M. Nakano); Yoh Clinic, Inazawa, Japan (M. Yoh)

Address for correspondence: Joseph R. Hoyt, University of California, Santa Cruz–Ecology and Evolutionary Biology, 1156 High St, Santa Cruz, CA 95064, USA; email: hoyjosephr@gmail.com; and Jiang Feng, Northeast Normal University, Changchun-School of Environment, 5268 Renmin St., Changchun, Jilin, People’s Republic of China; email: fengj@nenu.edu.cn

DOI: http://dx.doi.org/10.3201/eid2201.150868

To the Editor: In 2009, 2010, and 2013, Neisseria gonorrhoeae strains H041 (ceftriaxone MIC of 2 mg/L), F89 (ceftriaxone MIC of 1 mg/L), and A8806 (ceftriaxone MIC of 0.5 mg/L) were isolated from samples from patients in Japan (1), France (2) and Australia (3), respectively. In Japan, no other clinical N. gonorrhoeae strains with decreased susceptibility to ceftriaxone were reported until 2014, when clinical strain GU140106 (ceftriaxone MIC of 0.5 mg/L) was isolated from a man in in Nagoya, Japan. We report details of this case and sequencing results of the penA gene for the strain. The study was approved by the Institutional Review Board of the Graduate School of Medicine, Gifu University, Japan.

N. gonorrhoeae strain GU140106 was isolated from a urethral swab sample from a man with acute urethritis. The man had received fellatio, without condom use, from a female sex worker in Nagoya in December 2013. He visited our clinic in January 2014 for urethral discharge. Culture of a urethral swab sample was positive for N. gonorrhoeae. We used the Cobas 4800 CT/NG Test (Roche Molecular Systems Inc., Pleasanton, CA, USA) to test a first-voided urine sample; results were positive for N. gonorrhoeae but negative for Chlamydia trachomatis. The infection was treated with a single-dose regimen of ceftriaxone (1 g) administered by intravenous drip infusion. Two weeks later, N. gonorrhoeae strain GU140106 was isolated from the urethral swab sample for susceptibility testing and antibiotic sensitivity.

Additional strains from the patient’s patient’s clinic and hospital were tested. We cultured a Neisseria strain from a male sex worker in Nagoya in December 2013, who received fellatio, without condom use, from the patient. Culture of a urethral swab sample from a man with acute urethritis. The man had received fellatio, without condom use, from a female sex worker in Nagoya in December 2013. He visited our clinic in January 2014 for urethral discharge. Culture of a urethral swab sample was positive for N. gonorrhoeae. We used the Cobas 4800 CT/NG Test (Roche Molecular Systems Inc., Pleasanton, CA, USA) to test a first-voided urine sample; results were positive for N. gonorrhoeae but negative for Chlamydia trachomatis. The infection was treated with a single-dose regimen of ceftriaxone (1 g) administered by intravenous drip infusion. Two weeks later, N. gonorrhoeae strain GU140106 was isolated from the urethral swab sample for susceptibility testing and antibiotic sensitivity.

These authors contributed equally to this article.
the man reported no symptoms, and his first-voided urine sample was negative for leukocytes. The test-of-cure for *N. gonorrhoeae* was not performed. The female sex worker could not be examined for the presence of *N. gonorrhoeae* strain GU140106 in her pharynx.

The strain was confirmed to be a gonococcal species by testing with Gonochek-II (TCS Biosciences Ltd, Buckingham, UK), the HN-20 Rapid system identification test (Nissui, Tokyo, Japan), and the Apptima Combo 2 assay for CT/NG (Hologic, Inc., Bedford, MA, USA) and by 16S rRNA gene sequencing and *porA* pseudogene PCR (4). MICs of antimicrobial drugs for GU140106 were as follows, as determined by using the agar dilution method: 2.0 mg/L for penicillin G, 1.0 mg/L for tetracycline, 2.0 mg/L for cefixime, 0.5 mg/L for ceftriaxone, 8.0 mg/L for levofloxacin, 0.5 mg/L for azithromycin, and 32.0 mg/L for spectinomycin. The strain was determined to be resistant to levofloxacin, 0.5 mg/L for azithromycin, and 32.0 mg/L for cefixime, 0.5 mg/L for ceftriaxone, 8.0 mg/L for penicillin G, 1.0 mg/L for tetracycline, 2.0 mg/L for amoxicillin, and 16 mg/L for cefixime.

Pharmacodynamic analyses (10), a 1-g dose of ceftriaxone (the recommended first-line treatment for gonorrhea in Japan) would be effective against genital gonorrhea caused by strains exhibiting decreased susceptibility to ceftriaxone (e.g., strains GU140106 and A8806). However, such strains could be resistant to lower-dose regimens, including 250-mg and 500-mg doses of ceftriaxone.

This *N. gonorrhoeae* strain, GU140106, was isolated from the urethra of a man who received fellatio from a female sex worker in Nagoya, Japan, who had received fellatio, without condom use, from a female sex worker. Sequences were aligned with wild-type PBPs derived from nucleic acid sequences of the *penA* gene of *penicillin-susceptible* *N. gonorrhoeae* strain LM306 (GenBank accession no. M32091). The PBPs of gonococcal strains with decreased susceptibility to oral cephalosporins are quoted from our previous study (6). The PBPs of ceftriaxone-resistant strains H041 and F89 are derived from their *penA* genes (GenBank accession nos. AB546858 and JQ073701, respectively). The PBPs of strain A8806, which has decreased susceptibility to ceftriaxone, is derived from the nucleic acid sequence of the *penA* gene (David M. Whiteley, pers. comm., 2015). In strain H041, the concurrent presence of substitutions A311V, V316P, and T483S was reported to be responsible for conferring resistance to ceftriaxone (7). The PBPs of strain GU140106 are derived from the nucleic acid sequence of the *penA* gene (GenBank accession no. LC056026); the strain has the same A311V and T483S substitutions as strain H041, but it has substitution V316T instead of V316P. The PBPs of strains GU140106 and A8806 have the same amino acid substitutions at A311, V316, and T483. In addition, PBPs of strain GU140106 have several amino acid changes in positions 227–281 that were not observed in other strains.

Figure. Sequences of altered amino acids in penicillin-binding protein 2 (PBPs) of *Neisseria gonorrhoeae* strains with decreased susceptibility to oral cephalosporins and strains with resistance to ceftriaxone. Strain GU140106 was isolated from a urethral swab sample from a man in in Nagoya, Japan, who had received fellatio, without condom use, from a female sex worker. Sequences are aligned with wild-type PBPs derived from nucleic acid sequences of the *penA* gene of *penicillin-susceptible* *N. gonorrhoeae* strain LM306 (GenBank accession no. M32091). The PBPs of strains with decreased susceptibility to oral cephalosporins are quoted from our previous study (6). The PBPs of ceftriaxone-resistant strains H041 and F89 are derived from their *penA* genes (GenBank accession nos. AB546858 and JQ073701, respectively). The PBPs of strain A8806, which has decreased susceptibility to ceftriaxone, is derived from the nucleic acid sequence of the *penA* gene (David M. Whiteley, pers. comm., 2015). In strain H041, the concurrent presence of substitutions A311V, V316P, and T483S was reported to be responsible for conferring resistance to ceftriaxone (7). The PBPs of strain GU140106 are derived from the nucleic acid sequence of the *penA* gene (GenBank accession no. LC056026); the strain has the same A311V and T483S substitutions as strain H041, but it has substitution V316T instead of V316P. The PBPs of strains GU140106 and A8806 have the same amino acid substitutions at A311, V316, and T483. In addition, PBPs of strain GU140106 have several amino acid changes in positions 227–281 that were not observed in other strains.
female sex worker; thus, the bacteria could have derived from her pharynx. *N. gonorrhoeae* strain HO41 was previously isolated from the pharynx of a female sex worker (J). To prevent the emergence and spread of ceftriaxone-resistant *N. gonorrhoeae*, pharyngeal gonorrhea must be treated. It is uncertain whether a 1-g dose of ceftriaxone would be effective against pharyngeal gonorrhea caused by strains with decreased susceptibility to ceftriaxone, and this regimen might facilitate the selection of such strains from oral cephalosporin-resistant strains in the pharynx. The emergence of *N. gonorrhoeae* GU140106 in Japan suggests that new strategies (not just increased ceftriaxone doses), including combination treatment with ceftriaxone and another class of antimicrobial drugs and multiple dose regimens of ceftriaxone, might be required to treat pharyngeal gonorrhea.

This study was supported in part by the Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research [C] 25462509 and [C] 2646244201).

References

Address for correspondence: Takashi Deguchi, Department of Urology, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan; email: deguchit@gifu-u.ac.jp

Measles Outbreak among Adults, Northeastern China, 2014

Ming-Xiang Zhang,1 Jing-Wen Ai,1 You Li, Bing-Yan Zhang, Wen-Hong Zhang

Author affiliations: The Sixth People’s Hospital of Sheyang, Shenyang, China (M.-X. Zhang, Y. Li); Fudan University, Shanghai, China (J.-W. Ai, B.-Y. Zhang, W.-H. Zhang)

DOI: http://dx.doi.org/10.3201/eid2201.151293

To the Editor: In 2005, the World Health Organization (WHO) proposed to eliminate measles in the Western Pacific Region by 2012, and in 2006, China began a 6-year measles elimination campaign. The strategy included a routine 2-dose measles-containing vaccine (MCV) for children 8 months and 18–23 months of age, supplemented by nationwide vaccination activities in 2010 for children born during 1996–2010 (1). As a result, China’s measles incidence has dropped sharply since 2008 and reached its lowest level (0.46 cases/100,000 population) in 2012 (2). However, the rate has risen again since 2012; in 2014, incidence was 3.88 cases/100,000 population (3). Shenyang, a hub city in northeastern China, experienced a massive measles outbreak in 2014, and we analyzed the causes and characteristics of this outbreak.

Shenyang Center of Disease Control reported 2,058 confirmed measles cases (1,447 laboratory diagnosed, 611 clinically diagnosed) in 2014 (25.02 cases/100,000 population), much higher than that reported in Shenyang in 2013 (2.33/100,000). Most cases occurred in children 0–1 years of age (487 cases; 1.45/100,000), followed by persons 25–29 (277 cases; 28.57/100,000), 30–34 (203 cases; 32.42/100,000), and 35–40 (203 cases; 35.02/100,000) years of age. Among all 2,058 confirmed cases, 438 patients were hospitalized because of measles complications; no deaths were reported.

1These authors contributed equally to this article.