Acknowledgments
We thank The Sixth People’s Hospital of Shenyang and Shenyang Center of Disease Control for submitting measles case report forms and 302 Military Hospital of China for virus genotyping.

This study was supported by the National Science & Technology Pillar program during the 12th five-year period: A platform research of clinic treatment on new sudden occurrence of infectious diseases in combination of Chinese traditional and Western medicine (2012ZX10004301).

References
8. McCarthy M. Measles outbreak linked to Disney theme parks reaches five states and Mexico. BMJ. 2015;350:h436. http://dx.doi.org/10.1136/bmj.h436

Address for correspondence: Wen-Hong Zhang, Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Middle Rd, Shanghai, 200040, P.R. China; email: zhangwenhong@fudan.edu.cn

Objective Determination of End of MERS Outbreak, South Korea, 2015

Hiroshi Nishiura, Yuichiro Miyamatsu, Kenji Mizumoto

Author affiliations: The University of Tokyo, Tokyo, Japan (H. Nishiura, Y. Miyamatsu, Kenji Mizumoto); Japan Science and Technology Agency, Kawaguchi Saitama, Japan (H. Nishiura, Y. Miyamatsu, K. Mizumoto)

DOI: http://dx.doi.org/10.3201/eid2201.151383

To the Editor: After not finding any additional cases of Middle East respiratory syndrome (MERS) for several weeks in South Korea, in July 2015, the South Korean government and the World Health Organization (WHO) discussed the appropriate time to declare the end of the outbreak in July 2015 (1). This declaration would enable allocation of human resources to healthcare facilities to return to normal and would help restore international travel to the country. A widely acknowledged criteria of WHO to determine the end of an epidemic has been twice the length of the incubation period since the most recently diagnosed case (2). For MERS, the longest incubation period is 14 days. Thus, adopting 28 days as the waiting period, and counting days from diagnosis of the most recent case on July 4, 2015, the earliest date the South Korean government could have declared the end of outbreak was August 2 if it adhered to WHO criteria (1). However, to emphasize safety to the nation and to international travelers at an earlier time, the South Korean government originally decided to announce the end of the MERS outbreak on July 27, the date the last quarantined MERS patient was released from movement restriction. Because we are concerned about the validity of strict adherence to the WHO criteria, we objectively calculated the probability of observing additional cases at a given time and compared that probability with the WHO criteria.

To clearly define the end of the outbreak, we excluded reintroduction of imported cases and cases of MERS coronavirus infection resulting from a zoonotic reservoir. We defined the end of the outbreak as the end of continued chains of transmission. The probability of observing additional cases was derived by using the serial interval; that is, the time from illness onset in the primary case-patient to illness onset in a secondary case-patient, and the transmissibility of MERS (online Technical Appendix, http://wwwnc.cdc.gov/EID/article/22/1/15-1383-Techapp1.pdf). Both of these epidemiologic variables were estimated by using case data in South Korea (3,4). As practiced in the determination of the length of quarantine (5), the end of outbreak can be declared if that probability is <5%, a threshold value.
Our analysis showed that the first date on which the posterior median probability decreased to <5% was July 21 (Figure, panel A). The first date on which the posterior median decreased to 1% was July 23. Compared with August 2 as calculated from the WHO criteria, the end of the outbreak could have been declared 11 and 9 days earlier, respectively. Because the choice of 5% or 1% as the threshold probability is arbitrary (as practiced in determining the p value in any hypothesis testing) and because of the need to account for parameter uncertainties, we also measured the sensitivity of the first date on which the South Korean government could declare the end of the outbreak to a variety of threshold values (Figure, panel B). Examination of the probability of observing additional cases in the range of 0.5% to 10% indicated the end of the outbreak could have been declared from July 21 to July 24 (i.e., 9–12 days earlier than August 2).

Our proposed method does not account for missing undiagnosed or mild cases, and underdiagnosis would considerably extend the time to declare the end of an outbreak (and thus the proposed method is not directly applicable to, for example, Ebola virus disease in West Africa, for which we are currently developing an alternative method). All possible contact with diagnosed case-patients in the late phase of the MERS outbreak in South Korea were traced (6,7); thus, we believe it was appropriate to ignore ascertainment bias in this specific setting. Although our proposed approach is simplistic, adopting the WHO criteria could have added >1 week to the elevated state of tension, and the use of the incubation period distribution would be fully supported only when the exact times of infection were known for exposed potential contacts. Although it is a posteriori reasoning, the original decision made by the South Korean government at an earlier date was ironically supported by our proposed method. Rather than adopting the use of “twice” and the “incubation period,” which has not been theoretically justified, an objective decision of the end of an outbreak should explicitly rest on the risk of observing at least 1 more case on or after a specified date.

H.N. received funding support from the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI) grant nos. 26670308 and 26700028, Japan Agency for Medical Research and Development, the Japan Science and Technology Agency (JST) Core Research for Evolutional Science and Technology (CREST) program and Research Institute of Science and Technology for Society (RISTEX) program for Science of Science, Technology and Innovation Policy.

References
To the Editor: Coronaviruses (CoVs) in bats are genetically diverse, and evidence suggests they are ancestors of Middle East respiratory virus CoV (MERS-CoV), severe acute respiratory syndrome CoV, and human CoVs 229E and NL63 (1–4). We tested several bat species in Lebanon and Egypt to understand the diversity of bat CoVs there.

Samples were collected during February 2013–April 2015. A total of 821 bats were captured live in their caves; sampled (oral swab, rectal swab, serum); and released, except for 72 bats that died or were euthanized upon capture. Lungs and livers of euthanized bats were harvested and homogenized. Caves were in proximity to human-inhabited area but not in proximity to camels.

In Egypt, we sampled 3 bat species (online Technical Appendix 1, http://wwwnc.cdc.gov/EID/article/22/1/15-1397-Techapp1.pdf). Eighty-two Egyptian tomb bats (Taphozous perforatus) tested negative for CoV. We also sampled 31 desert pipistrelle bats (Pipistrellus deserti) and detected an HKU9-like betacoronavirus (b-CoV) in the lung of 1 bat (prevalence 3.2%). From 257 specimens from Egyptian fruit bats (Rousettus aegyptiacus), we detected b-CoV in 18 samples from 18 different bats (prevalence 7%). A murine hepatitis virus–like CoV was detected in the lung of 1 bat. HKU9-like viruses were detected in 5 oral, 2 lung, 5 liver, and 5 rectal samples. Overall, 5.1% of the bats tested positive.

In Lebanon, we sampled 4 bat species. Four Rhinolophus hipposideros bats and 6 Miniopterus schreibersii bats tested negative. One of 3 Rhinolophus ferrumequinum bats sampled was positive. We sampled 438 Rousettus aegyptiacus bats from 10 different locations and detected HKU9-like viruses in 24 rectal swab specimens (prevalence 5.5%). Overall, 5.5% of the bats tested positive.

A subset of the samples (696 samples: 516 from Egypt, 180 from Lebanon) were tested for MERS-CoV by using the specific upstream of E quantitative reverse transcription PCR; all tested negative. Serum samples from 814 bats tested negative for MERS-CoV antibodies.

Phylogenetic analysis revealed that the RNA-dependent RNA polymerase (RdRp) genes of viruses detected in R. aegyptiacus bats in Lebanon and Egypt were closely related to the RdRp gene of HKU9 CoV (Figure). Our viruses clustered in 3 groups: A, B, and C. Group A viruses were closely related to HKU9-10-2 virus and included viruses from Egypt. Group B included viruses from both countries and were closely related to HKU9-1 and HKU9-4 viruses. Group C also included viruses from both countries that were related to HKU9-3 and HKU9-5 viruses. The RdRp fragments sequenced had <90% nt similarity among groups A, B, and C. Within-group nucleotide similarity was >90%, and amino acid variability was 2%–4% (online Technical Appendix 2, http://wwwnc.cdc.gov/EID/article/22/1/15-1397-Techapp2.xlsx). The phylogenetic tree of the N gene also showed proximity of the viruses detected in our study to HKU9 viruses (online Technical Appendix 1). Viruses from Lebanon clustered together as did the viruses from Egypt.

Most of the positive samples were detected in Egyptian fruit bats. These are cave-dwelling species that inhabit regions of East Africa, Egypt, the Eastern Mediterranean, Cyprus, and Turkey (5). This species is a reservoir for several viruses, including Marburg, Kasokero, and Sosuga.