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Each day, the New York City Department of Health and 
Mental Hygiene uses the free SaTScan software to ap-
ply prospective space–time permutation scan statistics to 
strengthen early outbreak detection for 35 reportable dis-
eases. This method prompted early detection of outbreaks 
of community-acquired legionellosis and shigellosis.

The Bureau of Communicable Disease (BCD) at the 
New York City Department of Health and Mental Hy-

giene (DOHMH) monitors and investigates >70 reportable 
diseases among the city’s 8.49 million residents. Each day, 
healthcare providers and laboratories submit ≈1,000 com-
municable disease reports to BCD. Clusters (significant 
increases in observed vs. expected cases) and outbreaks 
(clusters believed to be associated with a common infection 
source) are detected through several methods, including 
notification by astute healthcare providers and by applying 
the modified historical limits method to detect increases in 
disease counts during the previous 4 weeks (1). This tem-
poral analysis is applied weekly citywide and for each of 5 
boroughs and 42 neighborhoods.

Cluster detection methods have been applied to syn-
dromic data sources (e.g., emergency department visits) 
since the early 2000s (2,3). Less extensively described is 
cluster detection using reportable disease data, which re-
flect specific laboratory-confirmed diagnoses, contain pa-
tient home addresses, and may include illness onset dates 
and work addresses collected during patient interviews 
and medical record reviews. Other public health practi-
tioners have applied purely temporal prospective clus-
ter detection methods to reportable disease data (4,5) or 
conducted proof-of-concept spatiotemporal prospective 
analyses (6,7). However, published descriptions of actual 
prospective application of spatiotemporal methods to re-
portable diseases are rare (8,9), suggesting lack of wide-

spread adoption among public health officials. We describe 
BCD’s experience with automated daily reportable disease 
spatiotemporal cluster detection using prospective space–
time permutation scan statistics (3) in SaTScan (10) during 
February 2014–September 2015, highlighting instances in 
which findings guided public health action.

The Study
For 35 reportable communicable diseases for which clus-
ter detection could inform programmatic activities (1), we 
analyzed disease counts for patients of all ages combined. 
For amebiasis, cryptosporidiosis, and giardiasis, for which 
outbreaks among young children are of particular interest, 
additional analyses were restricted to disease counts among 
patients <5 years of age, for 38 total daily analyses.

In BCD’s application, the space–time permutation 
scan statistic detects disease clusters in space–time cylin-
ders centered on every census tract centroid; the circular 
base represents space (maximum geographic cluster size of 
50% of all reported cases), and the height represents time 
(maximum temporal window length of 30 days, for most 
diseases). For each cylinder, a likelihood ratio–based test 
statistic is calculated. The test statistic is considered ele-
vated if the observed disease count during the time window 
in census tracts with centroids inside the cylinder’s circu-
lar base exceeds the expected number of cases, which is a 
function of 1) the case count in the circle during a baseline 
period (which accounts for any purely geographic varia-
tions in disease occurrence, diagnosis, and reporting) and 
2) the total case count citywide during the time window 
(which accounts for citywide purely temporal patterns, such 
as seasonality or secular trends) (3). The cylinder with the 
maximum test statistic is the cluster least likely to be due 
to chance under the null hypothesis that the same process 
generated disease counts inside and outside the cylinder.

To create a simulated dataset, cases’ dates are ran-
domly shuffled and assigned to the original census tracts. 
The maximum statistic for each simulated dataset is cal-
culated in the same way as for the observed dataset. For 
each disease, this process is repeated daily 999 times. The 
maximum value for the observed dataset is ranked among 
the 999 trial maxima. A p value (range 0.001–1) is derived 
from this ranking; p = 0.001 represents the highest signifi-
cance relative to the permutation trials. The Monte Carlo 
approach to deriving significance by using repeated trials, 
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each permuting observed data attributes, is designed to 
control for multiple testing.

A recurrence interval (RI) is calculated as the recipro-
cal of the p value and represents the number of days of dai-
ly surveillance required for the expected number of clusters 
at least as unusual as the observed cluster to be equal to 1 
by chance (11). We defined a signal as any cluster with an 
RI >100 days; that is, during any 100-day daily analysis 
period, the expected number of clusters at least as unlikely 
as the current cluster is 1.

We developed a SAS program (SAS Institute, Inc., 
Cary, NC, USA) to generate case and parameter files (Ta-
ble 1), read in a coordinate file of census tract centroids, 
invoke SaTScan in batch mode, read analysis results back 
into SAS for further processing, and output files to secured 
folders. For any signals, the program also generated emails 
notifying BCD leadership and staff responsible for follow-
up (online Technical Appendix, http://wwwnc.cdc.gov/
EID/article/22/10/16-0097-Techapp1.pdf).

This automated analysis detected the second largest 
US outbreak of community-acquired legionellosis (12), 
identifying a cluster of 8 cases centered in the South Bronx 

on Friday, July 17, 2015 (RI = 500 days) (Figure), before 
any human public health monitor noticed it. On Monday, 
July 20, an increase in cases was independently noticed 
by BCD staff members routinely investigating individual 
cases, and on July 21, an infection-control nurse working 
in the outbreak area called BCD to report an increase. The 
DOHMH and state and federal partners conducted an ex-
tensive epidemiologic, environmental, and laboratory in-
vestigation to identify and remediate the outbreak source, 
a cooling tower.

A shigellosis outbreak among the observant Jewish 
community in Brooklyn (13) began in late October 2014 
and was detected with 9 cases on November 14, 2014 
(RI = 333 days). BCD does not routinely investigate in-
dividual shigellosis reports, so automated analysis alone 
prompted early outbreak identification. Shigellosis out-
breaks within this community occur cyclically and have 
been linked to daycare and preschool attendance (14). 
Starting in mid-November, BCD staff visited community 
schools, daycare centers, and health fairs to promote ap-
propriate handwashing. The outbreak subsided by mid-
March 2015. Other clusters prompting investigations 
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Table 1. Case file specifications for routine reportable disease analyses in New York City, New York, using the prospective space–
time permutation scan statistic 
Feature Selection Notes 
Geographic 
aggregation 

Census tract (defined using US Census 
2000 boundaries) of residential address 

at time of report* 

The less data are spatially aggregated, the more precisely areas with 
elevated rates can be identified. New York City has 2,216 census tracts 

in an area of 305 square miles. 
Date of interest 
for analysis 

Event date, defined using hierarchy of 
onset date  diagnosis date (collection 
date of first specimen testing positive)  

report date  date event created in 
surveillance database 

Defining reportable disease clusters according to when case-patients 
became ill is preferred. However, onset date is missing for most case-

patients who have not yet been interviewed, and each case needs a date 
to be included in analysis. Thus, the best available proxy for onset date is 
used. Because we use daily data (rather than weekly, monthly, or yearly 

data), the time precision is specified as day on the SaTScan 
(http://www.satscan.org/) input tab. The time precision parameter 

indicates the temporal resolution of the data in the case file. 
Study period 1 y for most diseases, ending the day 

before analysis† 
One year is a reasonable choice, balancing the need for a period long 

enough to establish a stable local baseline for each spatial unit, yet short 
enough to avoid variable secular trends (e.g., geographically different 

increases in the underlying population of a spatial unit). Analyses are run 
each morning using data with event dates through the previous day. 

Case inclusion 
criteria 

Include all reported cases, regardless of 
current status (e.g., confirmed, probable, 

suspected, pending, noncase)† 

Depending on the disease, cases initially might be assigned a 
transient pending status and, upon investigation, be reclassified as a 
case (confirmed, probable, or suspected) or a noncase. Timeliness is 
preserved by analyzing all reported cases, including noncases and 

pending cases, regardless of whether they ultimately will be confirmed. 
By analyzing all reported cases, case inclusion criteria are consistent 

across the study period. If instead the case file were restricted to 
confirmed and pending cases, then analyses would be biased toward 

false signaling, as some cases with an initial pending status will be 
ultimately reclassified after investigation as a noncase. This 

reclassification process is complete for the baseline but ongoing for the 
current period of interest (1), and the speed of reclassification might vary 

geographically. 
Day-of-week 
variable 

Include a variable that indicates the day 
of the week (1–7) 

The analysis automatically adjusts for day-of-week effects but not for 
space by day-of-week interaction. Including this variable in the SaTScan 
case file accounts for how the daily pattern of health-seeking behavior 

and diagnoses might vary geographically. 
*Exception to residential address at time of report: if the residential address is not geocodable (e.g., because the case-patient is not a resident of the city 
or because a post office box is reported instead of a street address), then the geocoded work address, if available, is substituted. 
†For exceptions, see online Technical Appendix (http://wwwnc.cdc.gov/EID/article/22/10/16-0097-Techapp1.pdf). 
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included legionellosis (Queens, April–May 2015) and 
campylobacteriosis (Brooklyn, October 2014). During a 
1-year period, 28 unique signals were observed across 15 
diseases (Table 2), which staff perceived as a reasonable 
number for investigation.

Not all detected clusters were actionable. No public 
health response was conducted for an amebiasis cluster 
(Manhattan, April 2015; RI  =  143 days) consisting of 6 
men (34–49 years of age) diagnosed within a 12-day period 
and residing within a 0.35-mile radius because no case-
patients were identified as food handlers or daycare work-
ers. A public health response also was not conducted for 
a giardiasis cluster (Bronx, April 2015; RI = 1,000 days) 
that consisted of 6 household members who acquired the 
infection during international travel. Investigators were 
interested in being notified of and following such clusters 
over time, even if they ultimately were not actionable or 
verified as true outbreaks.

Conclusions
Several outbreaks in New York City, New York, were de-
tected by daily automated spatiotemporal analyses. Early 
cluster detection facilitated prioritization of individual case 
investigations, outbreak recognition and investigation, pro-
vider and community outreach, and timely intervention to 
limit sickness and death. This method has proven particu-
larly useful for identifying and monitoring outbreaks of 

shigellosis (6,8,9) and legionellosis and might be useful for 
monitoring additional diseases with outbreak potential, in-
cluding pertussis, syphilis, and tuberculosis.

Key to the system’s success is a strong informatics in-
frastructure, especially electronic laboratory reporting and 
near real-time geocoding of surveillance data. Other fa-
cilitators include a powerful statistical disease surveillance 
methodology, knowledgeable epidemiologists to interpret 
signals, and adequate outbreak investigation resources.

These methods could be useful to other health depart-
ments receiving more reports than can be rapidly reviewed 
manually. State health departments could consider con-
ducting similar analyses to detect clusters spanning mul-
tiple jurisdictions.
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Figure. Automated output from spatiotemporal 
analysis on July 17, 2015, indicating a cluster 
(dark gray) of 8 legionellosis cases over 8 days 
centered in the South Bronx, New York City, 
New York, USA. In subsequent days, this cluster 
expanded in space and time into the second 
largest US outbreak of community-acquired 
legionellosis.
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Table 2. Signaling rates at 3 recurrence interval thresholds for 35 reportable diseases under surveillance in New York City, New York, 
USA, 2014–2015* 

Disease 
Annual no. 

cases‡ 

No. signals during 365 d of prospective surveillance† 
Recurrence interval 

>365 d§ 
Recurrence interval 

>100 d 
Recurrence interval 

>30 d 
Amebiasis 476 0 1.2 4.3 
Babesiosis 57 0 0 0 
Campylobacteriosis 1,663 0.6 0.6 4.9 
Chikungunya 171 0.6 1.8 3.1 
Cholera 0 0 0 0 
Cryptosporidiosis 135 0 0 0.6 
Cyclosporiasis 51 0 0 1.2 
Dengue 57 0 0 1.8 
Encephalitis 2 0 0 0 
Giardiasis 871 1.2 1.8 5.5 
Hemolytic uremic syndrome 4 0 0 0 
Hepatitis A 78 1.9 1.9 5.8 
Acute hepatitis B 51 0.6 1.2 3.7 
Hepatitis D 0 0 0 0 
Hepatitis E 0 0 0.6 0.6 
Human granulocytic anaplasmosis 51 0.6 0.6 0.6 
Human monocytic ehrlichiosis 8 0 0.6 0.6 
Invasive group A Streptococcus disease 263 0 0 1.8 
Invasive group B Streptococcus disease 33 0.6 1.2 2.4 
Invasive Haemophilus influenzae disease 97 0 0 1.8 
Invasive Streptococcus pneumoniae disease 647 0 1.2 1.8 
Legionellosis 434 9.1 9.1 11.4 
Listeriosis 34 0 0 0.6 
Malaria 187 0.6 1.8 4.3 
Meningococcal disease 8 0 0 0.6 
Noncholera Vibrio spp. infection 18 0 0 0 
Paratyphoid fever 11 0 0 0 
Rickettisalpox 9 0 0 0 
Rocky Mountain spotted fever 6 0 0 2.4 
Shiga toxin–producing Escherichia coli 96 0 0 0 
Shigellosis 806 1.8 1.8 6.1 
Typhoid fever 31 0 1.9 3.8 
Vancomycin-intermediate Staphylococcus 
aureus infection 

28 0 0 0 

West Nile virus disease 19 0 0 0 
Yersiniosis 25 0 0 0 
Total signals across all diseases under 
surveillance 

NA 17.8 27.6 69.8 

*Signals were detected by using the prospective space–time permutation scan statistic. NA, not applicable. 
†A signal for a particular disease was defined as unique if the first most likely cluster on a particular day did not encompass any of the same census tracts 
as the first most likely cluster on the prior day. The signaling rate for most diseases was based on 598 d of surveillance (February 10, 2014–September 
30, 2015). For 5 diseases, the signaling rate was based on a shorter surveillance period to reflect analytic adjustments: hepatitis A, paratyphoid fever, and 
typhoid fever (190 d under surveillance after extending to a 60-d maximum temporal cluster size); legionellosis (160 d under surveillance after excluding 
unresolved cases); and Shiga toxin–producing E. coli (21 d under surveillance after excluding cases with only a positive multiplex PCR gastrointestinal 
panel test). 
‡Confirmed, probable, and suspected cases among residents with event dates October 1, 2014–September 30, 2015. 
§The signal was detected at the lower ≥100-d threshold on the same day for 50% of the signals, 1 d earlier for 19% of signals, 2 d earlier for 19% of 
signals, 3 d earlier for 6% of signals, and 7 d earlier for 6% of signals. 
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• �Reappearance of  
Chikungunya, Formerly 
Called Dengue, in the 
Americas	

• �Hantavirus Pulmonary  
Syndrome, Southern 
Chile, 1995–2012

• �Animal-Associated 
Exposure to Rabies  
Virus among Travelers,  
1997–2012

• �Evolution of Ebola 
Virus Disease from  
Exotic Infection to 
Global Health Priority, 
Liberia, Mid-2014	

• �Population Structure 
and Antimicrobial 
Resistance of Invasive 

Serotype IV Group B  
Streptococcus, Toronto,  
Ontario, Canada

• �Norovirus Genotype 
Profiles Associated with 
Foodborne Transmission,  
1999–2012	

• �Sequence Variability 
and Geographic  
Distribution of Lassa 
Virus, Sierra Leone	

• �Influenza A(H7N9) 
Virus Transmission 
between Finches  
and Poultry

• �Highly Pathogenic  
Avian Influenza A(H5N1)  
Virus Infection among 
Workers at Live Bird 
Markets, Bangladesh, 
2009–2010

• �Deaths Associated with 
Respiratory Syncytial 
and Influenza Viruses 
among Persons  
>5 Years of Age in 
HIV-Prevalent Area, 
South Africa	

• �Increased Risk for 
Group B Streptococcus  
Sepsis in Young  
Infants Exposed to HIV, 
Soweto, South Africa, 
2004–2008 

• �Bat Coronavirus in 
Brazil Related to  
Appalachian Ridge 
and Porcine Epidemic 
Diarrhea Viruses  

• �Tandem Repeat  
Insertion in African 
Swine Fever Virus,  
Russia, 2012  

• �Norovirus GII.21 in 
Children with  
Diarrhea, Bhutan

• �Enterovirus D68  
Infection, Chile,  
Spring 2014

• �Zika Virus Infection, 
Philippines, 2012 

• �Chikungunya  
Outbreak, French  
Polynesia, 2014 

• �Nairobi Sheep Disease 
Virus RNA in Ixodid 
Ticks, China  

• �Avian Influenza 
A(H10N7) Virus– 
Associated Mass Deaths 
among Harbor Seals 

• �Hepatitis E Epidemic, 
Biratnagar, Nepal, 
2014

http://wwwnc.cdc.gov/eid/articles/issue/21/4/table-of-contents

April 2015: Emerging Viruses
Including:


