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South America are genetically divergent and diverse (6,8). 
We hypothesize that the European population is poorly 
adapted to South American strains and therefore more sus-
ceptible to OT. If this hypothesis is true, Native Americans 
who had a long history of exposure to atypical strains from 
South America should be more resistant to OT. This hy-
pothesis is reinforced by a recent survey conducted among 
Mbyá-Guarani Indians, who had a serologic prevalence of 
toxoplasmosis 70%, but only 3.5% of them had toxoplas-
mic retinochoroidal lesions (M. Rudzinski, unpub. data).

Argentineans have a large incidence of European ge-
netic heritage in their Y-chromosomal and autosomal DNA, 
but ≈50% of their mitochondrial gene pool is of Native 
American ancestry (9). The amount of admixture between 
Europeans and Native Americans with inheritance of re-
sistance genes to OT from Native Americans may explain 
the difference of susceptibility to RTR between Hispanic 
and non-Hispanic Europeans. Admixture events between 
Europeans and Native Americans mainly involved Hispan-
ics whose migration to Argentina started in the 16th century 
and continued until the mid-20th century. Persons in Ar-
gentina who have Spanish surnames can carry as much as 
80% Native American genetic ancestry (9,10). In contrast, 
the Slavic and German Europeans migrated to Misiones 
only during a large surge of European immigration between 
1890 and 1950, and did not have substantial admixture with 
Native Americans. Despite the fact that this study was not 
a random or representative sample of all ethnic groups in 
Argentina and the Native American mixture of the patients 
was not known, and environmental and dietary influences 
were not examined, our results suggest host genetic factors 
as determinants of disease severity in OT.
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To the Editor: The outbreaks of dengue virus (DENV), 
chikungunya virus (CHIKV), and Zika virus infection that 
occurred on islands in the Indian Ocean, the Pacific, and 
the Caribbean over the past decade have demonstrated the 
potential of these arboviruses to pose a global public health 
threat. All 3 viruses were first isolated in the mid-20th cen-
tury in either African or Asian countries; however, until 
2005, only DENV (family Flaviviridae, genus Flavivirus) 
was considered a global public health concern (1).

In 2005, CHIKV infection, which typically manifests 
as fever, joint pain, rash, and polyarthralgia, emerged on 
islands in the Indian Ocean. During the next 10 years, 
CHIKV (family Togaviridae, genus Alphavivirus) caused 
several outbreaks in the Indian subcontinent, Asia, and 
Central Africa, and autochthonous transmission was re-
ported in Europe (2). In 2011, CHIKV appeared for the first 
time in the Pacific region; 2 years later, it had expanded 
throughout the region (3). At the end of 2013, CHIKV 



emerged in the Caribbean and subsequently spread to the 
continental Americas, resulting in 1,726,539 suspected and 
60,746 laboratory-confirmed CHIKV infections in the re-
gion as of December 18, 2015 (http://www.paho.org/hq/
index.php?option=com_docman&task=doc_download&It
emid=&gid=30198&lang=en).

In 2007, Zika virus (family Flaviviridae, genus Flavivi-
rus), which typically manifests as fever, joint pain, rash, and 
conjunctivitis, emerged for the first time outside Africa and 
Asia, in Yap State in Micronesia. Six years later, the virus 
caused a large outbreak in French Polynesia and then spread 
to other Pacific islands (3). In May 2015, autochthonous cas-
es of Zika virus infection were confirmed in Brazil. By the 
end of the year, Brazil had declared an outbreak, and the vi-
rus had spread to several neighboring countries (http://www.
paho.org/hq/index.php?option=com_docman&task=doc_
download&Itemid=&gid=30198&lang=en).

The emergence of CHIKV and Zika virus in the Indian 
Ocean, the Pacific, and the Caribbean might result from 
multiple drivers. One factor is the presence of competent 
vectors, including the widely distributed Aedes aegypti 
and Ae. albopictus mosquitoes, but also endemic Aedes 
species that might serve as additional vectors, such as Ae. 
hensilli mosquitoes in Yap State (4). Small tropical islands 
also offer contexts conducive to mosquito proliferation and 
disease transmission; most meet the criteria to be listed as 
Small Islands Developing States and territories (SIDS) in 
the United Nations’ framework of programs of action for 

sustainable development (http://www.un.org/documents/
ga/conf167/aconf167-9.htm). SIDS are characterized by 
environments that are particularly sensitive and prone to 
natural disasters, populations that often lack safe water 
supplies and sanitation, and local governments that have 
limited resources to implement vector control and manage 
outbreaks. The increasing volume of travel between SIDS 
and continental regions where CHIKV and Zika virus are 
endemic has facilitated the spread of these viruses to previ-
ously unexposed populations.

Recent outbreaks of chikungunya and Zika have 
led to unexpected observations regarding the virulence 
and epidemic potential of such viruses. The occurrence 
of severe clinical symptoms in CHIKV infection (e.g., 
persistent arthralgia, destructive arthritis, and fulminant 
hepatitis) were documented by Renault et al. (5) during 
an outbreak in La Réunion Island during 2005–2006 (2). 
The severity of the outbreaks in the Indian Ocean was 
further correlated with the occurrence of specific muta-
tions in the CHIKV genome that enabled highly efficient 
transmission of the mutated Indian Ocean lineage by Ae. 
albopictus mosquitoes (2,4). Later, chronic polyarthralgia 
and CHIKV infection–related deaths, most in the elderly 
and patients with co-morbid conditions, were reported in 
the Caribbean and the Pacific regions during outbreaks 
caused by the CHIKV Asian genotype (4). Zika-related 
neurologic disorders and a 20-fold increase in the inci-
dence of Guillain-Barré syndrome were first reported dur-
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Figure. Areas affected by dengue, chikungunya, and Zika viruses, worldwide, 2005, 2010, and 2015, illustrating the evolution of 
the geographic distribution of these viruses over the past decade (1–5,7). Light shading/circles indicate countries with endemic 
transmission; dark shading/circles indicate countries with outbreaks recorded during the previous 5 years; dots indicate imported cases 
in countries without autochthonous transmission; stars indicate countries with reported autochthonous transmission. 



ing the outbreak in French Polynesia during 2013–2014. 
Cases of Guillain-Barré syndrome were also recorded 
during the Zika outbreak in Brazil (6). Moreover, soon 
after health authorities in Brazil warned of an increase in 
the prevalence of microcephaly in newborns that might 
be associated with Zika virus infection in mothers during 
pregnancy, health authorities in French Polynesia con-
firmed that neurologic congenital abnormalities also had 
been observed during the Zika outbreak there (6).

Other lessons learned from the emergence of CHIKV and 
Zika virus in small tropical islands include evidence of non-
vectorborne virus transmission and its associated public health 
implications. Perinatal transmission of Zika virus to a neonate 
was first described in infected pregnant women in French 
Polynesia, and possible transplacental transmission was fur-
ther corroborated by the detection of the virus in amniotic flu-
id samples of 2 pregnant women in Brazil whose fetuses had 
been diagnosed with microcephaly (6). Sexual transmission 
of Zika virus, suggested by Foy et al. (7), was corroborated 
by detection of virus in the semen of a patient in French Poly-
nesia (8). To prevent transmission of CHIKV and Zika virus 
by blood transfusion, local blood banks in French Polynesia 
and the Caribbean adjusted their algorithms for blood dona-
tion and screening of blood products during outbreaks (9,10).

When we observe the geographic distribution of 
DENV, CHIKV, and Zika virus over the past decade, 
DENV expansion appears to have been a continuous pro-
cess. However, the emergence of CHIKV, first in the In-
dian Ocean and later in the Caribbean, and the emergence 
of Zika virus in the Pacific has dramatically expanded the 
reach of these viruses (Figure).
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To the Editor: In sub-Saharan Africa, febrile patients 
are often assumed to have, and are treated for, malaria, but 
when tested, many are malaria-negative. Because emerging 
diseases, such as chikungunya virus (CHIKV) and dengue 
virus (DENV) infections, cause outbreaks around the world 
(1–3), the importance of these pathogens has become more 
evident. However, low-income countries have limited epi-
demiologic data on alternative diagnoses to malaria (4,5) 
and poor laboratory capacity (1), which restrict further 
diagnostic investigations. An early study in Mozambique 
during the 1980s found antibodies to Rift Valley fever virus 
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