Isolation of Zika Virus from Febrile Patient, Indonesia

Author affiliations: Eijkman Institute for Molecular Biology, Jakarta, Indonesia (A. Perkasa, F. Yudhaputri, R.F. Hayati, C.N. Ma’roef, B. Yohan, K.S.A. Myint, R.T. Sasmono); Siloam Hospitals Jambi, Jambi, Indonesia (S. Haryanto); Eijkman-Oxford Clinical Research Unit, Jakarta (U. Antonjaya); Centers for Disease Control and Prevention, Fort Collins, Colorado, USA (J.P. Ledermann, R. Rosenberg, A.M. Powers)

DOI: http://dx.doi.org/10.3201/eid2205.151915

To the Editor: Arthropodborne viruses (arboviruses) cause substantial human disease worldwide and have a pronounced effect on public health throughout Asia. Zika virus, discovered in Uganda in 1947 (1), is a flavivirus related to the following viruses: dengue (DENV), West Nile, Japanese encephalitis, and yellow fever. Like DENV, Zika virus is cause substantial human disease worldwide and have a pronounced effect on public health throughout Asia. Zika virus, discovered in Uganda in 1947 (1), is a flavivirus related to the following viruses: dengue (DENV), West Nile, Japanese encephalitis, and yellow fever. Like DENV, Zika virus is cause substantial human disease worldwide and have a pronounced effect on public health throughout Asia. Zika virus, discovered in Uganda in 1947 (1), is a flavivirus related to the following viruses: dengue (DENV), West Nile, Japanese encephalitis, and yellow fever. Like DENV, Zika virus is cause substantial human disease worldwide and have a pronounced effect on public health throughout Asia. Zika virus, discovered in Uganda in 1947 (1), is a flavivirus related to the following viruses: dengue (DENV), West Nile, Japanese encephalitis, and yellow fever. Like DENV, Zika virus is...
further tested with Zika virus–specific real-time quantitative RT-PCR (2) by using the QuantiTect Probe RT-PCR Kit (QIAGEN, Valencia, CA, USA) with amplification in the iCycler iQ5 (Bio-Rad, Hercules, CA, USA), following the manufacturer’s instructions. Viral titers of JMB-185, as determined by real-time quantitative RT-PCR, were 4.25×10^3 PFU, 5.07×10^7 PFU, and 7.33×10^6 PFU for the clinical sample, first passage, and second passage, respectively.

The isolation and characterization of Zika virus from a resident with no travel history confirm that the virus is circulating in Indonesia and that, by mimicking mild dengue infection, this infection is likely contributing to the large number of undiagnosed cases of acute febrile illness. Although reported human cases of Zika virus infection have been rare in Southeast Asia (1), confusion with dengue and difficulty in obtaining a laboratory diagnosis are likely causing its incidence to be underestimated. Surveillance must be implemented to evaluate and monitor the distribution of Zika virus and the potential public health problems it may cause in Indonesia.

Acknowledgments
We thank the patient, physicians, and the management of Siloam Hospitals Jambi for their support during the study.

This study was supported by the Ministry of Research, Technology and Higher Education of the Republic of Indonesia, the US Centers for Disease Control and Prevention, and the US Agency for International Development.

References

Address for correspondence: R. Tedjo Sasmono, Eijkman Institute for Molecular Biology, JL. Diponegoro 69, Jakarta 10430, Indonesia; email: sasmono@eijkman.go.id

Fatal Sickle Cell Disease and Zika Virus Infection in Girl from Colombia
Author affiliations: Entidades Promotoras de Salud Barrios Unido Mutual, Quibdó, Colombia (L. Arzuza-Ortega); Empresa Social del Estado Hospital de Malambo, Malambo, Colombia (A. Polo); Hospital Metropolitano, Barranquilla, Colombia (G. Pérez-Tatis, Alfonso J. Rodríguez-Morales).