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Middle East respiratory syndrome (MERS) remains a seri-
ous international public health threat. With the goal of ac-
celerating the development of countermeasures against 
MERS coronavirus (MERS-CoV), funding agencies, non-
governmental organizations, and researchers across the 
world assembled in Riyadh, Saudi Arabia, on November 
14–15, 2015, to discuss vaccine development challenges. 
The meeting was spearheaded by the Saudi Ministry of 
Health and co-organized by the International Vaccine Insti-
tute, South Korea. Accelerating the development of a pre-
ventive vaccine requires a better understanding of MERS 
epidemiology, transmission, and pathogenesis in humans 
and animals. A combination of rodent and nonhuman pri-
mate models should be considered in evaluating and de-
veloping preventive and therapeutic vaccine candidates. 
Dromedary camels should be considered for the develop-
ment of veterinary vaccines. Several vaccine technology 
platforms targeting the MERS-CoV spike protein were dis-
cussed. Mechanisms to maximize investment, provide ro-
bust data, and affect public health are urgently needed.

Middle East respiratory syndrome (MERS) remains a 
serious public health threat within Saudi Arabia and 

internationally, as recently illustrated by an outbreak in South 
Korea with potential pandemic risk (1–7). A vaccine (or 
vaccines) targeting the MERS coronavirus (MERS-CoV),  

which causes the disease, will be a critical component of 
future public health prevention measures (8–10). With the 
goal of accelerating the development of countermeasures 
against MERS-CoV, funding agencies, nongovernmental 
organizations, and researchers across the world assem-
bled in Riyadh, Saudi Arabia, on November 14–15, 2015, 
to discuss current data and research progress to enhance 
understanding of disease progression from MERS-CoV 
infection, vaccine development, the challenges of develop-
ing treatment measures (e.g., unclear disease mechanisms 
and transmission patterns), preclinical development and 
animal models, the landscape of emerging technologies 
and scientific platforms, and considerations for clinical de-
velopment. One primary objective of the meeting was to 
articulate a coordinated action plan that aligns efforts and 
resources. The meeting was spearheaded by the Ministry 
of Health (MOH) of Saudi Arabia and co-organized by the 
International Vaccine Institute, Seoul, South Korea.

Development of MERS-CoV Animal Models
When developing countermeasures against MERS-CoV 
infection, rodents and small animal models that mimic hu-
man disease hallmarks would be useful in initial screening 
studies before the measure is tested in larger animals (e.g., 
nonhuman primates and, potentially, camels). Although 
upper respiratory tract disease develops more severely in 
the latter (11), studying immune correlates of protection 
and vaccine efficacy in camels (the only natural host be-
sides bats and humans identified thus far) may reveal vul-
nerabilities of MERS-CoV that may be exploited for hu-
man vaccine strategies. 

The development of MERS vaccines faces several 
challenges. Existing small animal species do not naturally 
express the primary receptor that MERS-CoV uses to in-
fect humans, the human dipeptidyl-peptidase 4 (hDPP4) 
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receptor (12–19). This lack results in the animal’s inability 
to sustain infection and for clinical illness to develop from 
MERS-CoV. Larger animal models, such as nonhuman pri-
mates, have not yet been optimized to consistently mimic 
the disease patterns observed in human infection (which is 
incompletely understood) and also have associated logis-
tical challenges because that work must be completed in 
Biosafety Level 3 facilities.

Mouse DDP4 cannot support MERS-CoV infection 
(16). Although efforts have been made to adapt MERS-
CoV itself to exhibit human disease phenotypes in rodents, 
greater success has been achieved through the development 
of specialized mouse models that express hDPP4 (20–22). 
Mouse strains that globally express hDPP4 are susceptible 
to infection by MERS-CoV, and the mice display lower 
respiratory tract infection, weight loss, and increased respi-
ratory rate, but also encephalitis, which makes the strains 
highly lethal. Human DPP4 expression is, however, tran-
sient and limited to the lung after Ad5-hDPP4 transduction 
by intranasal inoculation (21). These infected transgenic 
mice exhibit transcriptional activation of genes encod-
ing classic antiviral cytokines (interferon [IFN]-β, IFN-γ, 
and MX-1) and pro-inflammatory cytokines (interleukin 
[IL]-2, IL-6, IL-12, p40, IL-1-α, and tumor necrosis fac-
tor  [TNF]-α), as well as chemokines (granulocyte-colony 
stimulating factor [G-CSF], monocyte chemoattractant pro-
tein-1 [MCP-1], interferon gamma-induced protein 10 [IP-
10], CXC motif ligand 1 [CXCL-1], macrophage protein 
1 [MIP-1], and chemokine (C-C motif) ligand 5 [CCL5 or 
RANTES]), in contrast with the negligible gene activation 
of infected nontransgenic mice. IL-1, IL-6, TNF-α, G-CSF, 
MCP-1, IP-10, CXCL-1, MIP-1, RANTES, and interferon-
induced GTP-binding protein (MX-1) have been detected 
in the lungs and brains of infected transgenic mice (20).

However, formation of hybrid mouse–human DPP4 
dimers in transgenic mice could affect immune regulation 
and lead to poorly understood outcomes that could confuse 
the interpretation of disease natural history and vaccine 
efficacy. Alternatively, a minimally modified version of 
mouse DPP4, by mutation of 2 amino acids, can support 
MERS-CoV infection. Mice with this mutation experience 
severe lower respiratory tract infection, although they do 
not exhibit brain infection (16). In addition, Pascal et al. 
have developed mice that express hDPP4, under the control 
of its endogenous promoter and the 3′ untranslated region, 
and show lung-specific infection and inflammation (22). 
Further testing may prove that vaccine evaluation in these 
small animal models could lead to a better understanding 
of immunogenicity and efficacy of vaccine candidates and 
the therapeutic measures being considered for evaluation in 
larger animals and humans.

Among current nonhuman primate models, rhesus 
macaques display mild-to-moderate clinical signs on viral 

challenge (23), whereas the common marmoset is report-
ed to exhibit more severe signs of infection (24,25) and 
could be a better model for the severe clinical syndrome 
observed in MERS-CoV–infected persons. However, not 
all research groups have been able to replicate severe dis-
ease outcomes in marmosets. Factors contributing to this 
could include variations in physical location, age, and ori-
gin of the marmosets; challenge virus strains and stocks; 
route and dose of inoculation; and in protocols. To be able 
to provide robust and reproducible outcomes, these nonhu-
man primate models need additional development, optimi-
zation, and standardization. 

Camels are also being used to evaluate MERS-CoV 
infection, and findings from Adney et al. showed that these 
animals are unique in that they experience an upper respira-
tory tract infection. Although we do not know the efficien-
cy of airborne versus droplet or another mode of transmis-
sion, viral shedding from the upper respiratory tract might 
explain the efficiency of camel–camel and camel–human 
transmission (11,26). Although camels do not display the 
severe disease symptoms observed in infected humans (26), 
a camel infection model remains useful for understanding 
the disease in camels and identifying potential immune 
correlates of protection induced by vaccination. Veterinary 
countermeasures could form part of a One Health strategy 
to forestall zoonotic transmission to humans (1). Hesita-
tion to implement animal vaccination strategies in camels 
once a vaccine becomes available can be attributed to the 
absence of severe disease in camels (only upper respiratory 
tract infection with rhinitis) and to skepticism among key 
groups regarding zoonotic transmission of MERS-CoV to 
humans (e.g., camel breeders).

Although the animal models for evaluating MERS-
CoV infection represent progress, they do not recapitu-
late the pathogenesis of severe human disease. A combi-
nation of both small and large animal models should be 
considered for evaluation of preventive and therapeutic 
candidates for MERS. Regardless of the chosen model, 
comparing and interpreting results effectively and reduc-
ing discrepancies among laboratories will be crucial for 
researchers to agree on a set of standards with respect to 
experimental design, including variables for age of ani-
mals, specimen handling, route of administration, type of 
virus challenge, inoculation schedule, sample collection, 
and disease scoring algorithms.

Pipeline of MERS-CoV Vaccine and  
Antibody Technologies
Building on the experience from the closely related se-
vere acute respiratory syndrome coronavirus (SARS-CoV) 
(27), researchers have been actively working to understand 
MERS-CoV genetics to inform vaccine and therapeutic 
development efforts. They quickly demonstrated that the 
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spike (S) protein, a viral surface glycoprotein, was essen-
tial for recognition of hDPP4 and viral entry into cells and 
likely represented a prime target for immunogen design 
for the development of vaccines and monoclonal antibod-
ies (18,28,29). At the workshop, we reviewed various ap-
proaches—all in preclinical development and all based on 
the S protein or one of its components, including nanopar-
ticles, subunit proteins and peptides, DNA, various viral 
vectors, and live attenuated MERS-CoV.

Nanoparticles formed with MERS-CoV S protein, 
under development by Novavax (Gaithersburg, Maryland, 
USA), have been shown to induce virus neutralizing anti-
bodies (NAbs) in mice after a single injection; proprietary 
adjuvants enhance this response (30). Vaccines using an-
tigens expressed from the baculovirus platform developed 
by Novavax have been evaluated in human subjects in the 
context of phase I and phase II clinical studies for other 
infectious diseases without notable vaccine-related safety 
concerns (31–33).

Portions of the S protein, specifically the receptor-
binding domain (8,29,34–36), are also being developed as 
subunit vaccines. Jiang noted that these fragments map to 
a “critical neutralizing region” and induce strong immune 
responses and NAbs in mouse models (37,38). Moreover, 
the subunit vaccines have been shown to protect transgenic 
mice when challenged with MERS-CoV, indicating that 
vaccines focused on the receptor-binding domain may be 
sufficient for protective immunity to develop against the 
virus (39,40).

Several viral vectors, including adenovirus (41,42), 
modified vaccinia Ankara (MVA) (43,44), and measles vi-
rus (45), are also under development by different groups. 
Various lengths of S protein are being expressed on these 
platforms and are able to generate antibodies in animals 
that can neutralize MERS-CoV in vitro and, at least for 
some vector platforms, also generate cellular immune re-
sponses (43,45). For MVA- and measles virus–based vac-
cines, these responses confer protection in hDPP4-express-
ing mice (43,45). MVA constructs, which have established 
safety profiles in humans, have been tested in camels and 
can induce protective immunity, representing a potential 
veterinary technology (46). Moreover, on the basis of sup-
portive data from animal studies, these MVA constructs 
will soon enter clinical trials. Vaccines based on live at-
tenuated viruses historically have been shown to be highly 
efficacious; they are also safe and generally well tolerated. 
Enjuanes and others reported to the group the development 
of 2 engineered MERS-CoV vaccine candidates. One can-
didate was based on a propagation-defective MERS-CoV 
strain, and another was a live attenuated virus with 3 safety 
guards that used a MERS-CoV infectious cDNA clone 
(47). An inactivated SARS-CoV vaccine was shown to be 
safe and able to induce NAbs in a phase I trial (48).

DNA vaccines are generally perceived as a safe, sta-
ble platform for in vivo antigen expression. A SARS-CoV 
DNA vaccine, which expresses the SARS-CoV S protein, 
has been shown to induce NAbs and functional T-cell re-
sponses in humans (49). GeneOne (Blue Bell, PA, USA) is 
developing a proprietary, full-length S protein DNA vac-
cine candidate that has been shown to induce NAbs and 
highly functional T cells in various animal models and 
protect rhesus macaques from infection after MERS-CoV 
challenge when the vaccine is administered with electro-
poration to enhance uptake of the plasmid DNA (50). Con-
cerns remain regarding the immunogenicity of DNA vac-
cines in humans, although the effects of using therapeutic 
vaccination strategies for other diseases raise the potential 
for DNA-only approaches (51). In addition, Modjarrad re-
ported that using a prime-boost format, that a full-length S 
protein DNA vaccine, followed by an S-protein boost, can 
increase NAb titers, reduce the clinical severity of MERS, 
and increase the durability of protection in macaques (52).

To complement active immunization approaches, re-
searchers are also advancing several prophylactic or thera-
peutic approaches against MERS-CoV using NAb tech-
nologies through preclinical development. Because these 
NAbs target epitopes of the S protein (or specifically the re-
ceptor-binding domain), they can cause precise and potent 
inhibitory effects on viral entry in small and large animal 
models (53). The mechanisms of neutralization have been 
uncovered and are typically mediated by blocking MERS-
CoV binding to hDPP4 (22,52,54–56). As the supplemen-
tary agents of antibodies, the peptidic MERS-CoV fusion 
inhibitors targeting the conserved region in the S protein 
HR1 domain region are highly potent in inhibiting infec-
tion of MERS-CoV strains, including those resistant to 
NAbs. Intranasal administration of the peptides protected 
hDPP4-transgenic mice from MERS-CoV challenge, sug-
gesting that, alone or in combination with NAbs, these pep-
tides could be used to prevent and treat MERS-CoV infec-
tion (37,39,57).

Further characterization of these technologies and the 
potential for combination approaches are ongoing as in-
vestigators tackle questions related to viral escape (58,59). 
Preliminary results indicate that viruses that evade anti-
body neutralization have reduced viral fitness, demonstrat-
ing that escape can occur but comes at a cost to fitness. 
Nevertheless, continued investigation and surveillance 
are warranted. Marasco noted that sequencing of circulat-
ing strains will be critical to monitor viral evolution (60), 
which will only be possible with increased sample- and 
data-sharing. Ongoing studies related to cross-reactivity 
with human tissue and the effects of polyclonal and non-
neutralizing antibodies are also underway as passive im-
munotherapy becomes more accepted to prevent and treat 
MERS-CoV infection.
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Overall, selecting specific technologies and approach-
es that warrant further development is difficult, given the 
diversity of models and readouts and the concomitant need 
for greater standardization in the field. Although each tech-
nology presents unique advantages and deficiencies related 
to desired immunogenicity, safety, durability of protection, 
need for adjuvant, and manufacturing considerations, some 
technologies have a long track record in the clinic, which 
would potentially simplify their development and regula-
tory pathway. Given the public health urgency, these plat-
forms (or combinations thereof) should be made a priority.

The experience with SARS-CoV offers a sobering les-
son: countermeasures that advance on the basis of promis-
ing preclinical data may ultimately exacerbate disease in 
humans. Antibody-dependent enhancement of infectivity 
has been observed in cell culture in which a human pro-
monocyte cell line is used 61–63). In mice and hamsters 
vaccinated with a recombinant native full-length SARS-
CoV S protein trimer, serum IgG developed that blocked 
binding of the S protein to the ACE2 receptor and neutral-
ized SARS-CoV infection in vitro. SARS-CoV entered 
human B-cell lines in an FcγRII-dependent and ACE2-
independent fashion, indicating that antibody-dependent 
enhancement of virus entry is a novel cell entry mechanism 
of SARS-CoV. Vaccinated animals showed no signs of en-
hanced lung pathology or hepatitis, and viral load was un-
detectable or greatly reduced in lungs after challenge with 
SARS-CoV (64). However, in the presence or absence of 
adjuvant, vaccination of mice with viruslike particles or 
inactivated virus induced eosinophilic immunopathologic 
changes in young and aged mice (65–67). The pulmonary 
immunopathologic features, on challenge with SARS-CoV, 
were associated with Th2-type immunopathology with 
prominent eosinophil infiltration. Although no enhance-
ment of immunopathologic features has been observed in 
MERS-CoV–vaccinated and –challenged animals, future 
studies of MERS-CoV vaccines in animals and humans 
should consider that possibility.

Vaccine Development Considerations  
for MERS-CoV
To date, commitment to open communication regarding 
MERS-CoV vaccine development has been haphazard, and 
leaders in the field are calling for a new approach that inte-
grates resources to accelerate science and enhance biosecu-
rity. New norms and standards are under development by 
the World Health Organization (WHO) to streamline sample 
collection (type, storage and availability, quality control); 
and information dissemination and publication. Combining 
resources available in Saudi Arabia, South Korea, the United 
States, Europe, and beyond to develop countermeasures for 
MERS-CoV, an “open innovation” paradigm shift can maxi-
mize public sector investment, provide robust information 

for a systems-level approach, and deliver the necessary pub-
lic health effect that is urgently needed.

The Saudi Arabia MOH, working with Saudi aca-
demic institutions, WHO, and other stakeholders, recog-
nizes the crucial role it has to play in defining the public 
health goals that will guide vaccine development efforts 
for MERS-CoV (68,69). Researchers, vaccine develop-
ers and health authorities must understand how a vaccine 
is expected to fit into the larger public health strategy to 
combat MERS (e.g., target populations and vaccination 
strategies, level of efficacy, safety profile for a vaccine), 
as well as the pathway to future vaccine testing (e.g., de-
sign of efficacy trial), licensure and access. Few vaccine 
developers in the MERS arena have experience conduct-
ing preclinical and clinical research in the Middle East, 
and the Saudi MOH and Saudi Food and Drug Authority 
have a valuable role to play in defining the expectations 
for future clinical studies and in educating developers on 
the associated regulatory pathway.

Summary
The potential threat posed by MERS-CoV necessitates a 
multipronged approach to the development of effective 
countermeasures. Salient public health messages from the 
workshop included the following points:

1.	 �Accelerating the development of a vaccine requires 
a better understanding of MERS-CoV epidemiol-
ogy, transmission, and pathogenesis in humans 
and animals. This information will help develop 
target product profiles for human and veterinary 
vaccines, which in turn will facilitate planning for 
efficacy trials and inform development strategies.

2.	�Because current animal models do not fully reflect 
hallmarks of severe human disease, a combination 
of both rodents and nonhuman primate models 
should be considered in evaluating and develop-
ing preventive and therapeutic candidates under 
standardized conditions.

3.	�Current vaccine development strategies involve a 
variety of technology platforms, primarily targeting 
the MERS-CoV S protein. Given the public health 
urgency, platforms (or combinations thereof) with 
an established safety track record in humans should 
be given priority. Other target species such as drom-
edary camels should also be considered for the de-
velopment of veterinary vaccines as a One Health 
approach.

4.	�Attention should be paid to lessons learned from 
SARS-CoV vaccine development efforts, particu-
larly to signs of potential disease enhancement in 
various animal models.
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5.	Therapeutic antibodies are recognized as poten-
tially useful tools in MERS prevention and treat-
ment, but the concern around escape mutants with 
increased fitness, although concern is not limited 
to this technology type, warrants continued inves-
tigation and surveillance. Such an approach could 
be considered alone or in combination with vaccine 
approaches. As supplementary agents, the peptidic 
fusion inhibitors may be developed as MERS pro-
phylactics and therapeutics.

6.	An opportunity exists for greater coordination 
around specific technology platforms and to ensure 
that appropriate incentives are considered to stimu-
late research and development collaboration from 
academia, industry, nongovernmental organizations, 
and governments.

7.	The Saudi Arabia MOH, working with WHO and 
other stakeholders, has a crucial role to play in de-
fining the public health goals that will guide vaccine 
development efforts.

Next Steps: Establishing a New Paradigm  
for Collaboration
Funding agencies, nongovernmental organizations, and 
companies recognize the need for cooperation and have re-
solved to formalize a collaborative model. The field recog-
nizes the opportunity to set a precedent for how it collabo-
rates as a global community in the context of an emerging 
disease, building on lessons learned from the recent inter-
national response to the Ebola epidemic. Although still 
subject to consultation, key components of a partnership(s) 
were identified, including coordinating funding, sharing 
samples/data, advancing preclinical models, beginning 
clinical trials in regions having outbreaks, and standardiz-
ing assays and reagents for testing.

Exact partnership structures remain to be determined but 
should at the very least allow for coordination of activities 
through frequent, transparent, and open discussions among 
funding agencies and stakeholders. Future models, includ-
ing a formalized consortium of players who would make a 
long-term commitment to advance selected products through 
development phases, can be contemplated once technologies 
are evaluated more rigorously. Regardless of the final part-
nership structure(s), the core of any collaborative strategy 
should include sharing of data and samples and standard-
izing laboratory assays to ensure that everyone learns from 
each other, are able to compare technologies, and ultimately 
accelerate the development of new solutions.

V.S.M. is supported by the Intramural Research Program of the 
National Institute of Allergy and Infectious Diseases, US  
National Institutes of Health.

Dr. Excler is the head of Clinical Development and  
Regulatory Affairs at the International Vaccine Institute, Seoul, 
South Korea. He has been working extensively for the past 25 
years on the clinical development of an HIV vaccine.
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