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Estimated Incidence of Antimicrobial Drug–
Resistant Nontyphoidal Salmonella 

Infections, United States, 2004–2012 

Technical Appendix 

Background 

We describe the use of a Bayesian hierarchical model (BHM) to estimate resistance 

incidence. We used data on isolations of Salmonella serotypes from the Laboratory-based 

Enteric Disease Surveillance (LEDS) and resistance proportions from the National Antimicrobial 

Resistance Monitoring System (NARMS). The yearly surveillance data of 48 states (excluding 

Alaska and Hawaii) from both LEDS and NARMS are volatile due to sampling variation and 

may be biased due to underreporting. For NARMS data, many states have small numbers of 

isolates due to the sampling scheme (1 in 20), particularly for Heidelberg and less common 

serotypes. The estimation of resistance proportions by state and year is unreliable due to the 

small sample size. BHM provides a framework to mitigate the issues based on partial pooling 

(borrowing strength) from structured data, e.g. neighboring states may exhibit similarity in 

incidence and resistance proportions. BHM reduces variability in estimates by spatial smoothing 

of geographically related surveillance data. It provides a flexible approach by accounting for 

structured and non-structured variances in the data. 

Another advantage of BHM is its utility in handling missing data. Data were missing 

from both surveillance systems, especially for some combinations of serotypes and resistance 

types. For example, not all states reported or submitted isolates of the major serotypes every 

year, thus infection incidence rates and resistance proportions were not available for the states 

that did not report or submit isolates for the year. In Bayesian statistics, missing values are 

treated as unknown parameters and are estimated in the same manner as other parameters in the 

model, and Bayesian estimation of missing values takes into account the uncertainty of 

parameter estimation.  
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Bayesian hierarchical model 

NARMS model of resistance proportion: 

We assume that the observed number of resistant isolates follows a binomial distribution 

with unknown proportion parameter θs,t 

𝑛𝑠,𝑡~𝑏𝑖𝑛(𝜃𝑠,𝑡, 𝑇𝑠,𝑡)  

where ns,t  is the number of isolates resistant to the antimicrobial drug in state s and time 

t, Ts,t  is the number of isolates tested in state s in time t. and θs,t , the unknown probability of the 

resistance in state s and period t.  

We use the logit link function to relate the probability of resistance in a state and year to 

predictive factors 

log[(𝜃𝑠,𝑡) (1 − 𝜃𝑠,𝑡)⁄ ] = 𝛼 + 𝑣𝑠,𝑡 + 𝑢𝑠,𝑡 + 𝜑𝑠,𝑡    (1) 

where α is a random effect of grand mean,  

𝛼~𝑁(0, 𝜏𝛼) 

vs,t represents temporal autocorrelation of random walk, i.e. the value at time t were 

related to the previous value at time t-1 with random drift specified by variance parameter 𝜏𝜏 

𝑣𝑠,1~𝑁(0, 𝜏𝑣) 

𝑣𝑠,𝑡~𝑁(𝑣𝑠,𝑡−1, 𝜏𝑣) 

We set the normal distribution variance parameter, 𝜏𝜏 equal to 2 to impose a temporal 

autocorrelation between the resistance proportion of a state in a given year and that of the 

preceding year; that of the first year is set to be normal variate of zero mean to anchor the 

posterior.  

𝑢𝑠,𝑡 in equation 2 is the structured state spatial random effect reflecting a time-varying 

neighborhood effect (2).  

𝑢𝑠,𝑡|𝑢−𝑠,𝑡~𝑁(𝑢𝑠,𝑡̅̅ ̅̅̅ ,
1

𝜏𝑢𝑚𝑠
) 

where u –s denotes states adjacent to state s. Adjacency is defined as sharing a border with 

the focal state s, 𝑢𝑠,𝑡̅̅ ̅̅̅ is the mean of estimates across the neighbors of state s at time t, and ms is 



 

Page 3 of 10 

the number of neighboring states of state s. For τu ,we adopted a weak gamma prior proposed by 

Kelsall and Wakefield (1) 

𝜏𝑢~𝐺(0.5,0.0005) 

This prior assumes that the spatial random effects for a single adjacent state has a 

standard deviation centered around 0.05 with 1% probability being smaller than 0.01 or larger 

than 2.5 (1). 

Finally, φs,t is state-time interaction term of normal variate 

 𝜑𝑠,𝑡~ 𝑁(0, 𝜏𝜑) 

After experimenting with different options, we settled with a fixed τφ equal to 2 to 

balance the amount of shrinkage from observed values across the various states and years. For 

missing Ts,t, we assumed them as either the mean of the known submission rates (estimated from 

submitted rates over the years when submission occurred) or as 1 if the former was not available. 

In the latter case, the influence of the assumed values (one isolate) would be minimized.  

LEDS model of Salmonella incidence: 

The standard model for incidence based on count data is the Poisson distribution (3). 

However, counts and incidence rates of different serotypes varied drastically from year to year 

(Fig. 2). We found that use of a Poisson model was inadequate to capture the variability observed 

in the data and resulted in estimates of little, if any, shrinkage of observed values. To capture the 

observed variability in yearly observed incidence rates, we adopted a truncated normal 

distribution for the incidence rates (/100,000) Is,t (truncated for Is,t <0)  

𝐼𝑠,𝑡~𝑁(𝜇𝑠,𝑡, 0.1)  

We adopted a similarly structured model as the NARMS model described above  

𝜇𝑠,𝑡 = 𝛼 + 𝑣𝑠,𝑡 + 𝑢𝑠,𝑡 + 𝜑𝑠,𝑡    

We used following priors for the parameters 

𝛼~𝑁(0,0.5) 

vs, t was temporal autocorrelation of random walk 

𝑣𝑠,1~𝑁(0, 𝜏𝑣) 
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𝑣𝑠,𝑡~𝑁(𝑣𝑠,𝑡−1, 𝜏𝑣) 

We set 𝜏𝑣 as 5 to impose a temporal autocorrelation of incidence rates of state s to be 

related to that of the preceding year; that of the first year was set to be normal variate of zero 

mean.  

𝑢𝑠,𝑡|𝑢−𝑠,𝑡~𝑁(𝑢𝑠,𝑡̅̅ ̅̅̅ ,
1

𝜏𝑢𝑚𝑠
) 

𝜏𝑢~𝐺(0.5,0.0005) 

 𝜑𝑠,𝑡~ 𝑁(0, 5)  

Adjustment for not fully serotyped LEDS data 

We applied serotype-resistance data to all LEDS isolates, including not fully serotyped 

isolates, after adjustment for incomplete serotyping for all 48 states. For each state, we imputed 

serotypes for LEDS isolates that were not fully serotyped based on the observed proportions of 

five serotype categories (Enteritidis, Typhimurium, Newport, Heidelberg, and other) among fully 

serotyped isolates over the 9 years. 

Adjustment for underreporting to LEDS by Florida  

The reported Salmonella incidence rates in Florida were much lower than those from 

states in the region, indicating significant underreporting from the state. We only adjusted for 

underreporting by Florida for overall nontyphoidal Salmonella and the four major serotypes. 

Table 1 presents means of incidence rates in Florida compared with those in six closest southern 

states (Alabama, Georgia, Mississippi, South Carolina, North Carolina, and Tennessee) for 

nontyphoidal Salmonella and four major serotypes. To reduce bias in plausible underreporting of 

incidence data by Florida, we adopted a regional BHM to estimate Florida incidence rates with 

adjustment for underreporting. The BHM for the region including Alabama, Florida, Georgia, 

Mississippi, South Carolina, North Carolina, and Tennessee was: 

𝜇𝑠,𝑡 = 𝛼 + 𝑣𝑠 + 𝑢𝑡 + 𝜑𝑠,𝑡    

where 𝑣𝑠  denotes the state effect, 𝑢𝑡 the year effect, and 𝜑𝑠,𝑡 the state-year interaction. 

The following priors were used 

𝛼~𝑁(0, 0.01) 
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𝑣𝑠~𝑁(0, 0.1) 

𝑢𝑡~𝑁(0, 0.1) 

𝜑𝑠,𝑡~𝑁(0, 10) 

Note, we used a large value 10 as the precision parameter for 𝜑𝑠,𝑡 to shrink Florida 

estimates more effectively toward the regional mean. 

The adjusted estimates of incidence rates in Florida were closer to the means from the six 

southern states. We used the adjusted incidence rates in Florida (Appendix Table) to replace the 

observed values as inputs to run the BHM for estimating resistance incidence. 

Summary posterior estimates of overall nontyphoidal Salmonella: 

Posterior estimates of resistance proportion, incidence rates, and resistance incidence of 

overall nontyphoidal Salmonella were derived from the aggregated joint distributions of 

posterior estimates of the corresponding measures of its component serotypes (Enteritidis, 

Typhimurium, Newport, Heidelberg, and other). The posteriors of resistance proportions were 

derived by averaging the predicted numbers of resistant isolates of the serotypes weighted by the 

numbers of submitted isolates, while the posteriors of incidence rates and resistance incidence 

rates were derived by summing the posterior estimates of the corresponding measures of the 

component serotypes. 

Summary posterior estimates of clinically important resistance: 

Similarly, the posteriors of clinically important resistance for four serotype categories 

(Enteritidis, Typhimurium, Newport, Heidelberg) were derived from the aggregated joint 

distributions of the posteriors of the corresponding measures of the mutually exclusive resistance 

categories (i.e., resistance to ceftriaxone, nonsusceptibility to ciprofloxacin, and resistance to 

ampicillin). 

Posterior estimates vs. observed values: 

We assessed the shrinkage of posterior resistance proportions (predicted) vs. crude 

proportions (observed) related to the number of isolates tested. Appendix Figure 1 shows the 

shrinkage for ampicillin resistance among isolates of overall nontyphoidal Salmonella, isolates of 

the four major serotypes, and other fully serotyped isolates. As part of model fitting, we plotted 

predicted estimates and observed values of resistance proportion, Salmonella infection incidence, 
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and resistance incidence by state-year for each of the four major serotypes by resistance 

category. Predicted estimates vs. observed values for ampicillin resistance among Salmonella 

ser. Typhimurium are shown in Appendix Figures 2–4. 

Software 

The models were run in R (4) with R2WinBUGS package (5) calling WinBUGS (6), 

which used Gibbs sampler for estimation of posteriors using Markov chain Monte Carlo MCMC 

simulation. Three chains of independent starting values of precision parameters were used. After 

throwing away 5000 burn-ins, 5000 posterior samples of parameters were harvested. 
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Technical Appendix Table. Mean annual incidence rates (per 100,000 person-years) of infections caused by nontyphoidal 
Salmonella (NTS) overall and four major serotypes in Florida and six closest southern states, 2004–2012 

State All NTS Typhimurium Enteritidis Newport Heidelberg 

Other southern states (crude)* 22.08 3.62 2.27 3.73 0.46 
Alabama (crude) 20.15 4.13 1.93 2.53 0.54 
Georgia (crude) 24.96 3.06 2.30 4.21 0.58 
Mississippi (crude) 28.38 5.51 1.43 5.10 0.38 
North Carolina (crude) 21.63 3.67 3.07 4.30 0.40 
South Carolina (crude) 24.00 2.87 3.31 4.42 0.38 
Tennessee (crude) 13.34 2.50 1.58 1.80 0.46 
Florida (crude) 3.14 0.13 0.12 0.12 0.02 
Florida (adjusted)† 11.90 1.93 1.26 1.87 0.40 
*Mean annual incidence rates for six closest southern states, Alabama, Georgia, Mississippi, North Carolina, South Carolina, and Tennessee 
†Annual incidence rates adjusted for incomplete serotyping and underreporting replaced observed values in the Bayesian hierarchical model for 
estimating resistance incidence. 

 
 

 

Technical Appendix Figure 1. Shrinkage of posterior estimates and crude proportions of ampicillin 

resistance among isolates of the 4 major serotypes, isolates of all nontyphoidal Salmonella (NTS) 

serotypes, and other fully serotyped isolates (Othfull), related to the number of isolates tested, by state 

and year, 2004–2012 
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Technical Appendix Figure 2. Comparison of posterior estimates (Pred) and crude proportions (Obs) of 

ampicillin resistance among Salmonella ser. Typhimurium isolates, by state and year, 2004–2012 
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Technical Appendix Figure 3. Comparison of posterior incidence estimates (Pred) and crude incidence 

rates (Obs) of Salmonella ser. Typhimurium infections (per 100,000 person-years), by state and year, 

2004–2012 
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Technical Appendix Figure 4. Comparison of posterior incidence estimates (Pred) and crude incidence 

rates (Obs) of ampicillin-resistant Salmonella ser. Typhimurium infections (per 100,000 person-years), by 

state and year, 2004–2012 


