
This case highlights 2 issues: the unknown epidemiol-
ogy of CHIKV in Africa and the difficulty of diagnosing 
one arboviral infection during an outbreak of another ar-
boviral infection. Further research is necessary to elucidate 
the true extent of CHIKV in African countries and to un-
derstand the public health implications of co-infection and 
co-distribution of multiple arboviruses.
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Little is known about the presence of human pathogenic 
Puumala virus (PUUV) in Lithuania. We detected this virus 
in bank voles (Myodes glareolus) in a region of this country 
in which previously PUUV-seropositive humans were identi-
fied. Our results are consistent with heterogeneous distribu-
tions of PUUV in other countries in Europe.

Puumala virus (PUUV) (family Bunyaviridae) is an
enveloped hantavirus that contains a single-stranded 

trisegmented RNA genome of negative polarity (1). PUUV 
harbored by the bank vole (Myodes glareolus) is the most 
prevalent human pathogenic hantavirus in Europe (2). A 
high population density of bank voles can lead to disease 
clusters and possible outbreaks of nephropathia epidemica, 
a mild-to-moderate form of hantavirus disease (3).

In contrast to the Fennoscandian Peninsula and parts 
of central Europe (4,5), little is known about the epidemi-
ology of PUUV in Poland and the Baltic States. Recent 
investigations confirmed the presence of PUUV in certain 
parts of Poland (5,6). A molecular study of bank voles in 
Latvia identified 2 PUUV lineages (Russian and Latvian) 
(7). In Estonia, serologic and molecular screening provided 
evidence of the Russian PUUV lineage (8). For Lithuania, 
a previous serosurvey indicated the presence of PUUV-
specific antibodies in humans from 3 counties (online 
Technical Appendix Figure 1, http://wwwnc.cdc.gov/EID/
article/23/1/16-1400-Techapp1.pdf). However, molecular 
evidence of PUUV in humans or in voles is lacking (9).

We report a molecular survey of rodent populations in 
Lithuania at 5 trapping sites, including 2 sites in counties 
where PUUV-specific antibodies were previously detected 
in humans (online Technical Appendix Figure 1). A total 
of 134 bank voles, 72 striped field mice (Apodemus agrar-
ius), and 59 yellow-necked field mice (A. flavicollis) were 
captured during 2015. Three trapping sites (Juodkrantė, 
Elektrėnai, and Lukštas) were located in forests at or near 

158 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 23, No. 1, January 2017

RESEARCH LETTERS



a cormorant colony, and 2 trapping sites (Žalgiriai and 
Rusnė) were located in a wet forest and flooded meadows. 
All applicable institutional and national guidelines for the 
care and use of animals were followed.

For PUUV detection, we extracted RNA from bank 
vole lung tissue samples by using the Qiazol Protocol 
(QIAGEN, Hilden, Germany) and conducting screening 
by using a small segment RNA–specific reverse transcrip-
tion PCR (RT-PCR) and primers Pu342F and Pu1102R (6). 
We detected PCR products for 5 (LT15/164, LT15/165, 
LT15/166, LT15/174, and LT15/201) of 45 bank voles 
from the Lukštas trapping site. All 9 striped field mice and 
2 yellow-necked field mice from Lukštas showed negative 
results for the PUUV RT-PCR.

 

We amplified the complete nucleocapsid protein– 
encoding region for 3 of the 5 samples positive by  
RT-PCR with 3 primer pairs: PuNCRS (5′-TAGTAG-
TAGACTCCTTGAA-3′)/Pu255R (5′-TGGACACAG-
CATCTGCCA-3′), Pu40F (5′-CTGGAATGAGTGACTTA-
AC-3′)/Pu393R (5′-TATGGTAATGTCCTTGATGT-3′), and 
Pu1027F (5′-ATGGCAGAGTTAGGTGCA-3′)/Pu1779R 
(5′-TCAGCATGTTGAGGTAGT-3′). RT-PCR products 
were directly sequenced by using the BigDye Terminator 
Version 1.1 Cycle Sequencing Kit (Applied Biosystems, 
Darmstadt, Germany). We deposited the sequences of the 
5 samples in GenBank under accession nos. KX757839, 
KX757840, KX 757841, KX751706, and KX751707 (Fig-
ure; online Technical Appendix Figure 2).

The 3 nucleocapsid protein–encoding nucleotide se-
quences showed identities of 98.2%–99.8%, and the 3 de-
duced nucleocapsid protein amino acid sequences showed 
identities of 99.8%–100% (online Technical Appendix 
Table). We found the highest similarity of the 3 nucleotide 
and corresponding amino acid sequences for the PUUV 
strain from Latvia (Jelgava1/Mg149/2008; JN657228): nu-
cleotide sequence 89.8%–90.4% and amino acid sequence 
99.8%–100% (online Technical Appendix Table).

We generated phylogenetic trees by using MrBayes 
3.2.6 software (http://mrbayes.sourceforge.net/download.
php) and MEGA6 software (http://www.megasoftware.
net/) for complete (1,302 nt; Figure) and partial (465 nt; 
online Technical Appendix Figure 2) nucleocapsid pro-
tein–encoding sequences. Phylogenetic analysis confirmed 
results of pairwise nucleotide sequence divergence analy-
sis, which indicated clustering of PUUV sequences from 
Lithuania with sequences from northern Poland (online 
Technical Appendix Figure 2) and the Jelgava 1 strain from 
Latvia (Figure). These sequences of the Latvian clade are 
well separated from the Russian and all other European 
PUUV clades.

To evaluate a potential association of PUUV with evo-
lutionary lineages of the bank vole, we determined vole 
cytochrome b gene sequences, deposited them in GenBank 

under accession nos. KX769843 (LT15/164), KX769844 
(LT15/165), KX769845 (LT15/166), KX769846 
(LT15/174), and KX769847 (LT15/201), and compared 
them with cytochrome b prototype sequences of evolution-
ary lineages. Consistent with results for northern Poland 
(6), we identified 2 bank vole lineages at Lukštas, and the 
PUUV sequences were detected in 4 bank voles of the Car-
pathian phylogroup and in 1 vole of the Eastern lineage.

In conclusion, we detected PUUV in bank voles at 1 
site (Lukštas) in Lithuania (prevalence of 11.1%). This site 
is located in a region where PUUV-seropositive persons 
were identified (9) and near the border with Latvia (online 
Technical Appendix Figure 1). The absence of PUUV in 
bank voles at 4 other sites might have been caused by the 
small number of voles tested. However, our results are con-
sistent with heterogeneous distributions of PUUV in other 
countries (10).

Detection of this novel PUUV strain by using a spe-
cific RT-PCR confirms the reliability of this assay for mo-
lecular diagnostic and epidemiologic studies of this virus in 
Lithuania. Future large-scale monitoring studies are needed 
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Figure. Phylogenetic tree based on complete nucleocapsid gene 
sequences of Puumala virus (PUUV) strains from Lithuania (LT), 
Latvia (Jelgava1), and other PUUV clades. Tula virus (TULV) 
was used as the outgroup. The tree was generated by Bayesian 
and maximum-likelihood analysis using MrBayes 3.2.6 (http://
mrbayes.sourceforge.net/download.php) and MEGA6 software 
(http://www.megasoftware.net/). The optimal substitution 
model was calculated by using jModelTest 2.1.4 (https://code.
google.com/p/jmodeltest2). The Bayesian tree was based on 
transition model 2 with invariant sites and gamma distribution 
and 4 million generations. For maximum-likelihood analysis, the 
Kimura 2-parameter model and 1,000 bootstrap replicates were 
used. Posterior probabilities are indicated before slashes, and 
bootstrap values are indicated after slashes. Scale bar indicates 
nucleotide substitutions per site. ALAD, Alpe-Adrian lineage; CE, 
Central European lineage; DAN, Danish lineage; FIN, Finnish 
lineage; HOKV, Hokkaido virus; LAT, Latvian lineage; N-SCA, 
North-Scandinavian lineage; RUS, Russian linage; S-SCA, South-
Scandinavian lineage. 



to evaluate the geographic distribution and temporal fluc-
tuation of PUUV in bank vole populations in Lithuania.
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The filarial parasite Loa loa overlaps geographically with 
Onchocera volvulus and Wuchereria bancrofti filariae in 
central Africa. Accurate information regarding this overlap 
is critical to elimination programs targeting O. volvulus and  
W. bancrofti. We describe a case of loiasis in a traveler 
returning from Bioko Island, Equatorial Guinea, a location 
heretofore unknown for L. loa transmission.

Loiasis (African eye worm disease) is caused by infec-
tion with Loa loa, a parasitic vector-borne filarial worm 

endemic to 10 countries in central and western Africa, in-
cluding Equatorial Guinea (1). The worm, spread by the 
bite of Chrysops dimidiata and C. silacea flies, is of public 
health concern because of its geographic overlap with On-
chocerca volvulus and Wuchereria bancrofti worms, which 
cause onchocerciasis and lymphatic filariasis, respectively 
(2). Mass drug administration programs for onchocercia-
sis and lymphatic filariasis often include ivermectin, which 
can cause serious and occasionally fatal adverse neurologic 
reactions in persons with high levels of circulating L. loa 
microfilariae (3). To avoid such reactions, an accurate pic-
ture of the geographic distribution of L. loa infection is 
needed. Given the importance of epidemiologic data in the 
management of filarial infections, we report a case of loia-
sis in a US woman who had traveled to Equatorial Guinea.

In May 2016, a 25-year-old woman sought care in 
Winston-Salem, North Carolina, USA, for fatigue, swelling 
of her left ankle, right knee pain, and intensely pruritic skin 
lesions on her lower extremities. She had lived on Bioko 
Island, Equatorial Guinea, during October 2015–March 
2016 while studying local wildlife. On Bioko Island, she 
frequented local water sources to bathe and wash clothes 
and consistently took atovaquone/proguanil for malaria 
prophylaxis. She did not spend time on Equatorial Guinea’s 
mainland or travel to other nations in central or western 
Africa. Her flight from the United States to Bioko Island 
connected in Ethiopia; she did not leave the airport. 

Symptoms developed soon after her return to North 
Carolina in late March 2016. Laboratory evaluations  
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