
The rapid emergence and reemergence of zoonotic diseas-
es requires the ability to rapidly evaluate and implement op-
timal management decisions. Actions to control or mitigate 
the effects of emerging pathogens are commonly delayed 
because of uncertainty in the estimates and the predicted 
outcomes of the control tactics. The development of mod-
els that describe the best-known information regarding the 
disease system at the early stages of disease emergence 
is an essential step for optimal decision-making. Models 
can predict the potential effects of the pathogen, provide 
guidance for assessing the likelihood of success of differ-
ent proposed management actions, quantify the uncertainty 
surrounding the choice of the optimal decision, and highlight 
critical areas for immediate research. We demonstrate how 
to develop models that can be used as a part of a decision-
making framework to determine the likelihood of success 
of different management actions given current knowledge.

Despite continued calls to improve the response to 
emerging infectious zoonotic diseases (1,2), universal 

guidelines for determining the best course of action when 
a new disease emerges are unavailable. Increasing ease of 
global travel (3), continued encroachment of human popu-
lations into wildlife-occupied areas, climate change (4), and 
increasing rates of microbial evolution and antimicrobial 
drug resistance (5) have increased the likelihood that wild-
life pathogens will be introduced into novel areas or na-
ive populations and spill over into human populations (1). 
This accelerating rate of disease emergence leaves decision 
makers with a short time frame to determine and implement 
an appropriate course of action. A framework that quickly, 
rigorously, and effectively synthesizes relevant information 
about a wildlife pathogen in the early stages of emergence 
is essential for informing management at critical stages and 
ultimately reducing the potential effects of the disease on 
humans, livestock, and other wildlife populations.

Decision theoretic approaches provide formal guide-
lines for transparent, repeatable, and defensible decision-
making that addresses specific management objectives, 
uncertainty of consequences, and potential trade-offs (6). 
Using approaches such as structured decision-making to 
frame decisions, modelers are provided a mechanism for 
including multiple and potentially competing objectives 
and evaluating the importance of uncertainties to a decision 
(7). An essential component for applying decision theory to 
emerging diseases is the development of predictive models 
that can be used to evaluate trade-offs between different 
management actions and disease consequences (8). The 
role of predictive models in informing management deci-
sions is to estimate the consequences of alternative control 
strategies and help determine which strategies are optimal. 
Models can be used to assist decision makers with assess-
ing the probability of a successful management outcome 
versus the risk of an unacceptable outcome (including non-
ecologic consequences), avoid unintentional consequences 
that might be exacerbated by delaying management inter-
ventions (9), and accommodate different goals and values 
of the decision maker and stakeholders (5,8). However, 
researchers are often reluctant to develop a model for fore-
casting the potential effects of emerging pathogens and the 
potential consequences of management actions because 
of uncertainty regarding the structure of the system (i.e., 
which parameters should be included in the model) and 
model parameter estimates (10).

Uncertainty often limits the ability to choose effective 
management strategies; therefore, it is vital to discriminate 
between uncertainties that are irreducible (i.e., environ-
mental or demographic stochasticity, which might not be 
resolved with more information but must be considered 
regardless in making forecasts) and uncertainties that are 
reducible through research, monitoring, and surveillance. 
Reducible uncertainties might include the choice of model 
(i.e., structural uncertainty) that best describes system dy-
namics, the effects of system drivers (i.e., parametric un-
certainty), and variation in system states across the land-
scape (i.e., spatial variability). Structural uncertainty can be 
resolved by testing different models and observing which 
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model(s) best predict the system in future years. Parametric 
uncertainty and spatial variability can likewise be reduced 
with monitoring data or by conducting research.

In this article, we outline 3 components essential to 
building a predictive modeling framework that researchers 
and managers should consider early in the emergence of a 
wildlife pathogen: 1) which modeling frame is most appro-
priate, 2) which parameters or factors are critical to mak-
ing preliminary predictions, and 3) how to collate exist-
ing data to parameterize the initial models. We describe 4 
commonly used models for disease systems, identify 5 key 
characteristics of disease systems that represent minimally 
sufficient information needed to parameterize models, and 
identify 3 ways to parameterize models when reliable data 
are lacking. Using this 4-5-3 framework, researchers can 
work with managers to rapidly develop useful predictions 
with uncertainty and prioritize information gathering to im-
prove the management of emerging diseases (Figure).

Choosing the Modeling Framework
Many disease modeling frameworks are available to select 
from (11,12) (online Technical Appendix Table 1, https://
wwwnc.cdc.gov/EID/article/23/1/16-1452-Techapp1.pdf). 
By considering the objectives of the modeling, the as-
sumptions of the different model frameworks, and the type 
of data that is either available or being collected, the list 
of modeling options can be narrowed down. Four gener-
ally useful classes of models are commonly used either on 
their own or in tandem with other model types to predict 
the spread and dynamics of wildlife pathogens: occupancy 
or patch dynamic models (13,14); compartmental (e.g., 
susceptible-infected-resistant) models (15); ecologic dif-
fusion models (16); and agent-based (or individual-based) 
models (17).

Occupancy modeling focuses on patch dynamics, col-
onization, and extinction rates and is appropriate for hosts 
that live in discrete habitats, such as in wetlands, in forest 
or prairie remnants, or on mountain tops, where subpopu-
lations are discrete and connected by occasional dispersal 
(18). The disease status (detected or not detected, percent-
age of hosts with disease) and the detection or nondetection 
of the host species in the patch is considered in these mod-
els, and the observed data can be corrected for nondetection 
bias. These models are appropriate for understanding land-
scape-level occurrence (number of patches occupied by 
disease) and extinction dynamics of an emerging disease 
(19). These models work best for disease systems in which 
the effects of the disease are severe and likely to result in 
patch extinction rather than sublethal effects that result 
in small declines in abundance. Alternatively, occupancy 
models have been used to model the dynamics of chytrid 
fungus for studies in which individual hosts within a patch 
are assessed for disease, and prevalence is estimated as the 

proportion of infected hosts (inferred via PCR detection of 
a pathogen) in a patch (20).

Compartmental models can capture the subtleties of 
sublethal effects on populations; these models require 
longitudinal information on individual hosts, although a 
sample of the population during 1 time period across mul-
tiple age groups can substitute for temporal information 
under certain assumptions (21). Traditional susceptible-
infected-resistant models assume the population is homo-
geneous with little spatial structure. This type of model 
works well for host populations in which individual dis-
ease states can be observed through time (e.g., the host-
disease system of brucellosis in bison, in which species 
are well-connected in space and can be captured and re-
captured over time) (22).

Diffusion models can be used to model the spread 
of diseases and can be useful for predicting new areas of 
disease emergence. Information needed for these models 
includes host movement characteristics, contact rates be-
tween host species, and transmission pathways of the dis-
ease. Observations of new disease locations over time can 
also be used to estimate the rate of spread of the disease. 
Diffusion models have been used successfully to estimate 
the rates of spread of rabies in foxes (23) and foot-and-
mouth disease in feral pigs (24).

Agent-based models (also known as individual-based 
models) can be used to assess the overall population dy-
namics of the host and the spread of the disease (25). These 
models can be particularly useful when it is necessary to 
model the disease system in a spatially-explicit fashion or 
when host behavior is complex (e.g., when hosts learn). 
Agent-based models have been used to assess the spatial 
patterns of parasite transmission in red colobus (Procolo-
bus rufomitratus) monkeys, in which each host has a spa-
tial memory of the value of patches, and each host weighs 
the benefits of being in a group for safety versus the costs 
of food competition (25). Only agent-based models are 
capable of capturing this complex behavior. By modeling 
what is known about individual host behavior and pathogen 
characteristics, systems-level patterns can be revealed by 
performing simulations. Agent-based models lend them-
selves to scenario development in which different patterns 
of host behavior can be modeled and the effects on the 
model outcome examined. These models, however, can be 
extremely data intensive, which impedes the modeling of 
systems with limited information (25,26).

 After selecting the framework among the different 
classes of models, model development usually progresses 
in a similar fashion. A common first step in model develop-
ment is identifying the key characteristics of disease sys-
tems that are necessary to estimate the potential effects on 
the host population and identifying key points where man-
agement options will be most effective.
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Identifying Key Parameters
In general, 5 characteristics of a disease system are need-
ed for predictive modeling: pathogenicity, environmental 
niche, taxonomic breadth of the hosts, transmission path-
ways between host and pathogen, and social behavior and 
movement patterns of the host species (Figure; Table; on-
line Technical Appendix Table 2). Knowledge of each of 
these characteristics can be used in each of the 4 model 
frameworks, but the specific parameters used depends on 
the model chosen.

Pathogens can affect host species in a variety of ways, 
and management decisions should take into account the 
estimated long-term impacts on the population. Knowl-
edge of the pathogenicity of the disease agent is essential 
for estimating long-term and population-scale effects. For 
example, diseases such as plague (27) might result in rapid 
die off of hosts, which might reduce the risk for pathogen 
spread beyond the local infected population. Some patho-
gens cause long-term sublethal effects, such as reduced fe-
cundity or growth, and greater vulnerability to predators 
and other stressors (28), or they result in infected hosts that 
are long-lived and capable of infecting numerous other po-
tential hosts (e.g., chronic wasting disease) (29).

The environmental niche of the disease agent or vector 
is also needed for developing models to predict the poten-
tial geographic extent of the disease (30). This information 
can help inform whether a disease might affect a species 
throughout its geographic range or whether environmental 
refuges might be expected (31). In addition, the taxonomic 
breadth of the hosts can indicate the potential for the patho-
gen to spread across multiple taxa, including humans. Mul-
tihost pathogens able to infect hosts across multiple taxo-
nomic groups are more likely to cause emerging infectious 
diseases in humans or livestock (32).

Transmission pathways determine the rate at which the 
pathogen spreads and ultimately the spatial distribution of 
the disease (33). Knowledge of the transmission pathways 
is key to assessing the potential for the pathogen to have 
long-term and widespread effects, as well as evaluating the 
effectiveness of potential management actions. Mosquito-
borne diseases, for example, have spread patterns very dif-
ferent from those for parasitic infections (e.g., toxoplasmo-
sis, brain worm), which rely on specific hosts to complete 
their lifecycles; these differences lead to different predic-
tions of spread (34,35).

Finally, the social behavior (which might be explicitly 
characterized by a contact network) of the host population 
can affect transmission rates by influencing the frequency 
and number of contacts (36–38). Panmictic populations 
(i.e., species that have interconnected populations mixing 
uniformly across their distribution) will be more likely 
to facilitate the rapid spread of disease compared with 
hosts that reside in small groups with low interpopulation  

connectivity. Similarly, hosts that commonly move long 
distances (such as bats or migratory birds) are more likely 
to facilitate rapid pathogen spread at large spatial scales. 
For example, the spread of white-nose syndrome among 
bats (https://www.whitenosesyndrome.org/resources/map) 
occurred over a relatively short period of time. Host spe-
cies with large continuous spatial distributions (such as 
deer) also have an increased potential for spreading disease 
among populations on a continental scale, even when they 
might not individually travel long distances; however, their 
rate of geographic spread is generally slower (http://www.
nwhc.usgs.gov/disease_information/chronic_wasting_dis-
ease/). Network theory has provided recent advances in the 
estimation and depiction of contact networks for disease 
transmission (36).

Parameterization of the Model 
When little information is available regarding the true pa-
rameter estimates and variance, several options can be used 
for parameterization, including empirical observation (39), 
borrowing information from similar diseases (40), and 
expert elicitation (41). Typically, model parameterization 
will likely include a combination of sources and scientific 
experts depending on the emerging disease of interest and 
model frame selected.

Empirical observations of initial patterns and dynam-
ics of pathogen spread can be used to estimate parameters, 
which can be updated as the pathogen is monitored through 
the initial introduction (42). Alternatively, observations 
from other areas where the pathogen previously emerged 
can be used to make initial predictions about introduction, 
spread, and establishment (40). Direct evidence of a disease 
agent’s potential for infection, transmission, and illness se-
verity or death can be determined by laboratory trials and 
can identify which species might be most vulnerable to 
immediate population declines (43). Uncertainty primar-
ily involves whether initial observations are characteris-
tic of later infections on the basis of variations in disease  
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processes and environmental conditions and whether eco-
logic niches are consistent among areas where the disease 
has and has not emerged.

A hallmark of emerging pathogens is that little em-
pirical data exists, especially in the initial stages of emer-
gence (44). The time required to obtain empirical data on 
a disease agent might be costly in terms of windows for 
effective action and should be explicitly evaluated in ini-
tial research efforts. However, borrowing information from 
more thoroughly described pathogens that cause similar 
diseases and expert elicitation might include additional 
uncertainty that can only be resolved through observation 
of the disease of interest. Despite these uncertainties, de-
laying management actions while information is collected 
might reduce effectiveness of the management strategy, 
limit available actions, and result in unacceptable popula-
tion declines. Instead of waiting for results from empiri-
cal studies, information from other related diseases can be 
used for parameterization of a novel disease model. This 
borrowing-of-information method used to estimate param-
eters can include both the uncertainty in the estimates from 
the original disease (i.e., variance), and the uncertainty in 
the relatedness between the novel and the original pathogen 
(which can be deduced by phylogenetic distances, origin, 
or environmental niche differences, if these are known or 
can be estimated).

In combination with empirical observation and bor-
rowed information, modelers can use expert elicitation 
methods to formally query experts for parameter estimates 
(online Technical Appendix) (45). A variety of methods 
exist to reduce biases associated with acquiring subjective 
information from experts, but all of these methods involve 
identifying explicitly the parameters for which expert opin-
ion is needed; preparing experts to normalize beliefs and 
experience (e.g., providing experts with common literature 
and explaining to them the uncertain parameters); summa-
rizing and discussing the rationale; and quantifying individ-
ual and group uncertainty. A strength of expert elicitation 
during early stages of disease emergence is that it permits 
rapid evaluation of management alternatives (e.g., control, 
eradication) under system and parameter uncertainty.

Uncertainty
After initial parameterization of a given model, an analy-
sis of the sensitivity and uncertainty associated with the 
model should be conducted. In general, sensitivity analy-
ses examine the contribution of each predictor variable to 
the uncertainty in the response variable, while uncertainty 
analyses describe the examination of the range of outcomes 
possible given the uncertainty in the input variables (46). 
Multiple methods are available for assessing the extent 
of the uncertainty associated with various parameters, in-
cluding variance-based methods, global uncertainty and 
sensitivity analyses, and Bayesian belief networks, which 
can help identify the uncertainties that are most likely to 
affect the management decision (47). These uncertainties 
can then become the focus of future research and moni-
toring efforts (48,49). Decision models that can evaluate 
trade-offs among multiple objectives (such as multicriteria 
decision analysis and portfolio decision analysis) (49) un-
der uncertainty and evaluate different optimal policies over 
time (stochastic dynamic programming and Markov deci-
sion process models) can be integrated with probabilistic 
disease predictive models to provide insights about optimal 
disease management strategies under deep uncertainty.

Conclusions
Identifying robust management strategies in the early stages 
of disease emergence, when more control options are avail-
able, is limited by numerous uncertainties. Predictive mod-
els can be useful in evaluating control options, forecasting 
spread, and calculating risk (the potential for an outcome 
to occur and the uncertainty surrounding the outcome), 
but parameterization of such models for emerging wildlife 
diseases is challenging. By outlining 4 common models, 
5 key parameters, and 3 methods for obtaining data, we 
outline a process for developing useful predictive models 
within a decision analysis framework (Figure). Ultimate-
ly, the development of models that capture key aspects of 
pathogen transmission and the severity of its effects can be 
used to evaluate the utility of different management deci-
sions, to determine where to focus limited resources, and 
to identify and justify immediate research needs (50). As 
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Table. Key information needs for management of emerging diseases of wildlife 
Pathogen characteristics Description 
 Pathogenicity What is the severity, lethality, and rapidity (rate of mortality) of effects on hosts? 
 Environmental niche What environmental conditions (temperature, humidity) restrict persistence? 
 Taxonomic breadth of host Is there evidence that the agent type can affect hosts across multiple taxa? Which taxa? 
Host characteristics  
 Contact networks Spatial structure: What is the spatial structure of host populations: panmictic, metapopulations, or 

isolated? Does this vary across the landscape? 
Movement patterns: What is the average and maximum distance an infected host might travel? 
Social behavior: What is the social behavior of individual members in the host populations? What 
is the rate of contact between species? 

 Transmission pathways How is the pathogen transmitted between hosts? How many different transmission pathways are 
there? 
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a burgeoning human population continues to encroach on 
wildlife habitats, encounters between humans and wildlife 
will likely become more common. Identifying diseases that 
have the potential to profoundly impact human, livestock, 
and ecosystem health, and responding in a rapid and logical 
manner is a priority. Control and mitigation of emerging 
diseases will benefit from the early development and ap-
plication of predictive modeling frameworks.
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