Paracoccidioidomycosis after Highway Construction, Rio de Janeiro, Brazil

Antonio C. Francesconi do Valle, Priscila Marques de Macedo, Rodrigo Almeida-Paes, Anselmo R. Romão, Marcia dos Santos Lazéra, Bodo Wanke

Address for correspondence: David M. Vu, Stanford University School of Medicine, Pediatric Infectious Diseases, 300 Pasteur Dr, Rm G312, Stanford, CA 94305, USA; email: davidvu@stanford.edu

Paracoccidioidomycosis is the major systemic mycosis in Latin America and the leading fungal cause of death in immunocompetent persons in Brazil (1, 2). Paracoccidioidomycosis is a neglected disease whose prevalence and incidence rates are underestimated because of lack of mandatory reporting. Infection follows inhalation of Paracoccidioides spp. conidia in the soil (3, 4) and can progress to disease, typically manifested in 1 of 2 clinical forms. The first form is chronic (adult type), which accounts for 80% of paracoccidioidomycosis cases, mostly in rural workers who show fungal endogenous reactivation in the lungs and other organs later in life. The second form is acute/subacute (juvenile type), which occurs primarily in young patients and is more severe because of progressive reticuloendothelial involvement, which results in high rates of complications, including death (5).

There have been reports of Paracoccidioides spp. infections after disturbances of soil that resulted in aerial dispersion of fungal propagules. Native indigenous populations in Latin America changed their ancient livelihood practices to cultivate coffee after deforestation of the Amazon rainforest, which resulted in paracoccidioidomycosis infections (6, 7). In addition, climate changes related to the El Niño events, such as a high rainfall index followed by increased storage of water by soil and higher humidity, have been shown to occur before an increase in acute/subacute paracoccidioidomycosis cases (8).

We report an outbreak of paracoccidioidomycosis after deforestation and massive earth removal during construction of a highway in Rio de Janeiro, Brazil. The study protocol was approved by the Evandro Chagas National Institute of Infectious Diseases Research Ethics Committee (register CAAE 42590515.0.0000.5262).

The Evandro Chagas National Institute of Infectious Diseases in Rio de Janeiro is a reference center for paracoccidioidomycosis. This disease is endemic to the state of Rio de Janeiro.

References

Rio de Janeiro (5). During 1988–2015, the annual average number of acute/subacute cases of paracoccidioidomycosis at this institution was 2.3 cases/year for this state and 1.4 cases/year for Baixada Fluminense, a region composed of 12 municipalities in the metropolitan area of Rio de Janeiro (Figure). However, during December 2015–December 2016, a total of 8 cases were diagnosed at this center, all from Baixada Fluminense, a rate ≈5.7 times higher than that expected for this period. The most recent (2016) census in Brazil estimated that there were 968,680 persons <30 years of age living in the affected municipalities (9).

Case definition was based on clinical and laboratory criteria: reticuloendothelial involvement in young patients; laboratory test results confirming the presence of multibudding yeast-like *Paracoccidioides* cells by direct microscopy or histopathologic analysis; fungal isolation in culture; or a positive serologic result for paracoccidioidomycosis (3). Data for the 8 case-patients (4 males and 4 females) are provided (online Technical Appendix Table 1, https://www.cdc.gov/EID/article/23/11/17-0934-Techapp1.pdf). Mean age was 22 (range 10–28) years. Median time for diagnosis was 7 (range 4–16) months. Predominant clinical manifestations were cervical lymph node enlargement (100%), hepatomegaly (25%), and splenomegaly (25%). Serious complications occurred in 5 patients: adrenal insufficiency (3 patients), cholestasis (1 patient), esophageal fistula (1 patient), and acute upper airway obstruction (1 patient). A 19-year-old patient died because of complications of paracoccidioidomycosis.

The Raphael de Almeida Magalhães Highway, also known as Arco Metropolitano, is a new highway in the study region (Figure). During its construction (2008–2014), large areas were deforested and massive amounts of earth were removed, which resulted in discovery of 62 archeological sites through 2012 (10). Two thirds of this highway (97 km) was constructed during 2012–2014. The highway was complete for 1 year before the number of new cases of paracoccidioidomycosis increased. Residences of patients were 0.1 km–16.6 km from construction areas. The increase in the number of acute/subacute cases of paracoccidioidomycosis, with temporal and geographic relationships to this construction, suggests a possible new risk for outbreaks of paracoccidioidomycosis.

Other hypotheses for this cluster are clearing of forests, soil humidity, and the El Niño phenomenon (3,8). It is noteworthy that the highway crosses a native Atlantic forest area. Moreover, over several months in 2013, this region had high rainfall indexes (online Technical Appendix Table 2), which presumably contributed to retention of moisture in the soil. A previous study showed that soil humidity favors sporulation and dispersal of *Paracoccidioides* spp. (3). Also, a high-intensity El Niño phenomenon occurred during May 2015–March 2016.

The incidence of acute paracoccidioidomycosis in the affected area after highway construction (8.25 cases/1 million persons/y, 95% CI 4.18–16.3 cases/1 million persons/y) was higher than that before highway construction (1.29 cases/1 million persons/y, 95% CI 0.74–4.03 cases/1 million persons/y). More persons were probably exposed to *Paracoccidioides* conidia, but these persons did not show progression/development of disease, did not seek medical attention, and did not have...
cases reported to health authorities. The chronic form of paracoccidioidomycosis will probably develop in some of these patients.

This study underscores the need for paracoccidioidomycosis surveillance, especially in the context of environmental alterations enhanced by climate change and affected by construction, deforestation, and other human interventions. Enhanced surveillance will more fully identify relative risks of different human enterprises and facilitate interventions for at-risk populations to reduce and prevent future outbreaks of paracoccidioidomycosis.

Acknowledgments

We thank Rosely Magalhães de Oliveira for providing epidemiologic assistance and Joshua Nosanchuk for providing editorial assistance.

A.C.F.dV was supported by Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (grant E-26/010.002203/2015).

Dr. Francesconi do Valle is a dermatologist in the Laboratory of Clinical Research in Infectious Dermatology, Evandro Chagas National Institute of Infectious Diseases, Rio de Janeiro, Brazil. His research interests are paracoccidioidomycosis and infectious diseases related to dermatology.

References

Address for correspondence: Priscila Marques de Macedo, Laboratório de Pesquisa Clínica em Dermatologia Infecciosa, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Ave Brasil, 4365, Manguinhos, 21045-900, Rio de Janeiro RJ, Brazil; email: priscila.marques@ini.fiocruz.br

Mycobacterium shimoidei, a Rare Pulmonary Pathogen, Queensland, Australia

Timothy M. Baird, Robyn Carter, Geoffrey Eather, Rachel Thomson

Author affiliations: Princess Alexandra Hospital, Brisbane, Queensland, Australia (T.M. Baird, G. Eather); Metro South Clinical Tuberculosis Service, Brisbane (T.M. Baird, G. Eather, R. Thomson); Greenslopes Private Hospital, Brisbane (R. Thomson); University of Queensland, Brisbane (R. Thomson); Royal Brisbane and Womens Hospital, Brisbane (R. Carter)

DOI: https://doi.org/10.3201/eid2311.170999

Nontuberculous mycobacteria are human pathogens with increasing incidence and prevalence worldwide. *Mycobacterium shimoidei* is a rare cause of pulmonary disease, with only 15 cases previously reported. This series documents an additional 23 cases of *M. shimoidei* from Queensland, Australia, and highlights the pathogenicity and clinical role of this species.
Paracoccidioidomycosis during Highway Construction, Rio de Janeiro, Brazil

Technical Appendix.

Technical Appendix Table 1. Characteristics for 8 patients with paracoccidioidomycosis during highway construction, Rio de Janeiro, Brazil*

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Age, y/sex</th>
<th>Residence distance from highway, km</th>
<th>Municipality/year of highway construction</th>
<th>Symptom onset/exposure time, mo</th>
<th>Date of diagnosis</th>
<th>Diagnostic technique/sample</th>
<th>Complication /outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31/F</td>
<td>9.8</td>
<td>DC/2013</td>
<td>2015 Apr/127</td>
<td>2015 Dec</td>
<td>Culture/lymph node aspirate Histologic analysis/lymph node for biopsy</td>
<td>None/clinical cure, still being treated Adrenal insufficiency/clinical cure, still being treated</td>
</tr>
<tr>
<td>2</td>
<td>21/F</td>
<td>9.5</td>
<td>NI/2013</td>
<td>2014 Aug/19</td>
<td>2016 Jan</td>
<td>Culture/lymph node aspirate Histologic analysis/lymph node for biopsy</td>
<td>Adrenal and respiratory insufficiency, tracheostomy/clinical improvement, treatment suspended (pregnancy)</td>
</tr>
<tr>
<td>3</td>
<td>28/F</td>
<td>9.3</td>
<td>MES/2013</td>
<td>2015 Jul/30</td>
<td>2016 Feb</td>
<td>Culture/lymph node aspirate Histologic analysis/lymph node and spleen sample for biopsy</td>
<td>None/clinical cure, still being treated Adrenal insufficiency/clinical cure, still being treated</td>
</tr>
<tr>
<td>4</td>
<td>27/M</td>
<td>4.7</td>
<td>NI/2013</td>
<td>2015 Dec/35</td>
<td>2016 Mar</td>
<td>Culture/lymph node aspirate Direct examination/skin sample for biopsy</td>
<td>Adrenal insufficiency/clinical cure, still being treated</td>
</tr>
<tr>
<td>5</td>
<td>23/F</td>
<td>0.1</td>
<td>DC/2013</td>
<td>2015 Apr/27</td>
<td>2016 Apr</td>
<td>Culture/lymph node aspirate Direct examination/skin sample for biopsy</td>
<td>Cholesteatosis/clinical cure, still being treated Adrenal insufficiency/clinical cure, still being treated</td>
</tr>
<tr>
<td>6</td>
<td>23/M</td>
<td>12.3</td>
<td>DC/2013</td>
<td>2015 Dec/35</td>
<td>2016 Jun</td>
<td>Culture/lymph node aspirate Direct examination/skin sample for biopsy</td>
<td>Cholesteatosis/clinical cure, still being treated</td>
</tr>
<tr>
<td>7</td>
<td>19/M</td>
<td>14.2</td>
<td>NI/2013</td>
<td>2016 Jan/36</td>
<td>2016 Jun</td>
<td>Culture/lymph node aspirate Direct examination/skin sample for biopsy</td>
<td>Cholesteatosis/clinical cure, still being treated</td>
</tr>
<tr>
<td>8</td>
<td>10/M</td>
<td>16.6</td>
<td>SEPT/2013</td>
<td>2016 Jul/42</td>
<td>2016 Oct</td>
<td>Culture/lymph node aspirate Direct examination/skin sample for biopsy</td>
<td>None/clinical cure, still being treated Adrenal insufficiency/clinical cure, still being treated</td>
</tr>
</tbody>
</table>

*Exposure to *Paracoccidioides* conidia might have occurred during highway construction or subsequently as a consequence of massive earth removal from areas with native forests where the fungus was present. This anthropic activity might result in a recurrent or continuous aerial dispersion of fungal propagules during and after construction. The incubation time for acute/subacute paracoccidioidomycosis is unknown, but it might be long because there are no reports of this disease in children <2.5 years of age, in contrast with other pulmonary systemic mycoses, such as histoplasmosis, coccidioidomycosis, and blastomycosis. DC, Duque de Caxias; MES, Mesquita; NA, not available; NI, Nova Iguaçu; NIL, Nilópolis; SEP, Sepetiba.

†Although the residence of patient 8 was in Sepetiba, he had also lived in Duque de Caxias.

Technical Appendix Table 2. Observed and expected monthly rainfall indexes for Duque de Caxias, Rio de Janeiro, Brazil, 2012–2016*

<table>
<thead>
<tr>
<th>Year</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Total, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>141</td>
<td>143</td>
<td>45</td>
<td>33</td>
<td>140</td>
<td>95</td>
<td>241</td>
<td>129</td>
<td>>970.8</td>
</tr>
<tr>
<td>2013</td>
<td>590</td>
<td>91</td>
<td>71</td>
<td>127</td>
<td>158</td>
<td>66</td>
<td>18</td>
<td>39</td>
<td>87</td>
<td>102</td>
<td>260</td>
<td>318</td>
<td>2,501.0</td>
</tr>
<tr>
<td>2014</td>
<td>67</td>
<td>50</td>
<td>50</td>
<td>160</td>
<td>215</td>
<td>75</td>
<td>5</td>
<td>39</td>
<td>87</td>
<td>102</td>
<td>196</td>
<td>105</td>
<td>1,240.6</td>
</tr>
<tr>
<td>2015</td>
<td>141</td>
<td>0</td>
<td>229</td>
<td>70</td>
<td>72</td>
<td>43</td>
<td>157</td>
<td>34</td>
<td>21</td>
<td>138</td>
<td>52</td>
<td>251</td>
<td>111.4</td>
</tr>
<tr>
<td>2016</td>
<td>528</td>
<td>344</td>
<td>199</td>
<td>126</td>
<td>65</td>
<td>161</td>
<td>8</td>
<td>68</td>
<td>123</td>
<td>116</td>
<td>650</td>
<td>244</td>
<td>2,523.2</td>
</tr>
<tr>
<td>Expected</td>
<td>366</td>
<td>176</td>
<td>270</td>
<td>203</td>
<td>111</td>
<td>80</td>
<td>4</td>
<td>64</td>
<td>110</td>
<td>104</td>
<td>341</td>
<td>330</td>
<td>2,221.9</td>
</tr>
</tbody>
</table>

*Measurements in 2012 started in May. Bold indicates months when the El Niño phenomenon occurred. NA, not available.