Pathogenic Elizabethkingia miricola Infection in Cultured Black-Spotted Frogs, China, 2016

Ruixue Hu, Junfa Yuan, Yin Meng, Zhe Wang, Zemao Gu

Multiregional outbreaks of meningitis-like disease caused by Elizabethkingia miricola were confirmed in black-spotted frog farms in China in 2016. Whole-genome sequencing revealed that this amphibian E. miricola strain is closely related to human clinical isolates. Our findings indicate that E. miricola can be epizootic and may pose a threat to humans.

Elizabethkingia is a genus of gram-negative, nonmotile, non–spore-forming bacilli occasionally associated with human clinical infections (1–6). Although E. meningoseptica is the most commonly identified nosocomial pathogen of the genus (2), many descriptions of this species are misidentifications of E. anophelis and E. miricola (3–5). E. anophelis, initially isolated from the midgut of mosquitoes, caused a large outbreak centered in Wisconsin during 2015–2016 (5). E. miricola was found in 2003 in condensation water at the Mir space station (7). The first reported case of E. miricola infection was in a hematology patient in the United States in 2008 (8). Subsequently, E. miricola has been increasingly documented as causing bacteremia and sepsis in immunocompromised and immunocompetent patients, mostly in European countries (6). Until now, pathogenic E. miricola has seldom been isolated from Asia, and whether E. miricola can be pathogenic to animals is unknown.

The black-spotted frog, Pelophylax nigromaculatus, is a typical amphibian species, largely endemic to east Asia. Owing to the success of rearing it on an artificial diet, this frog has been widely farmed under special government approval as an edible animal in south-central China in recent years. In 2016, epidemic meningitis-like disease outbreaks in cultured black-spotted frogs occurred in separate farms. We identified E. miricola as the predominant pathogen and used whole-genome sequencing (WGS) to further characterize this Asian epizootic isolate and phylogenetically compare it with the available typical Elizabethkingia genomes.

The Study

Since May 2016, many black-spotted frogs in farms in Hunan Province in south-central China have experienced an emerging, contagious disease characterized mainly by severe neurologic dysfunction. The first clinical sign is intermittent swimming in circles. Thereafter, the frogs develop signs of torticollis (Figure 1, panel A), disorientation (Video, https://wwwnc.cdc.gov/EID/article/23/12/17-0942-V1.htm), and anepithymia or meteorism (Figure 1, panel E). These signs are followed by cataacts (Figure 1, panel C); proptosis or hyperemia (Figure 1, panels B, D); agitation or lethargy; and, ultimately, death. The frogs are farmed in artificial ecologic wetlands or ponds with running water and shelter (online Technical Appendix Figure 1, https://wwwnc.cdc.gov/EID/article/23/12/17-0942-Techapp1.pdf). Most ponds in 1 farm, which share a common water supply, were infected sequentially within a short time. More than 60% of the frogs in the infected farms had signs of varying appearance, and 60%–90% of the diseased frogs died in the next few days or weeks. The disease continued until hibernation and returned the following spring.

During July–October 2016, we collected 213 abnormal frogs from 7 separate farms in Hunan Province, China (online Technical Appendix Figure 2). Histopathologic examination showed severe meningitis with denatured, incrassate meninges. We observed inflammatory infiltrates, moderate multifocal gliosis, and perivascular cuffing in the cerebellum (online Technical Appendix Figure 3). Results of the diagnostic tests for Batrachochytrium dendrobatidis and ranaviruses were negative (Table 1). Although we observed Myxosporidia protozoa in the gallbladder and some protists in the intestine, they were not identified as the etiologic agents, considering the proportion of infection (online Technical Appendix Figure 4).

We confirmed bacterial infections in 190 (89.2%) of the 213 frogs; 90% were E. miricola according to the 16SrRNA gene sequence, which shared 99.36%–99.86% similarity with E. miricola DSM14571 (online Technical Appendix). We selected bacterial strain FL160902, isolated from frog no. 160, as the representative isolate and conducted experimental pathogenicity testing by various infection routes, including intramuscular injection, immersion infection, and cohabitation with infected frogs. All animal handling was done in compliance with the National Institutes of Health protocols (online Technical Appendix). After 2 weeks of observations...

Author affiliations: Huazhong Agricultural University, Wuhan, China (R. Hu, J. Yuan, Y. Meng, Z. Wang, Z. Gu); Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan (R. Hu, J. Yuan, Z. Gu)

DOI: https://doi.org/10.3201/eid2312.170942
(Table 2), we found that the cumulative mortality (10%–70%) increased with dose in the injection trial and that 100% of frogs exposed to *E. miricola* by immersion died. In the cohabitation studies, 30% mortality was recorded, indicating cross-infection. Koch’s postulates were satisfied by identification of isolates from dead frogs as *E. miricola*, identical to FL160902.

To characterize *E. miricola* FL160902, we conducted WGS with the Illumina HiSeq 2500 platform (Illumina Inc., San Diego, CA, USA), producing 2 × 150-bp paired-end reads. We assembled the trimmed reads using SOAPdenovo (http://soap.genomics.org.cn/soapdenovo.html). We constructed a phylogenetic tree (Figure 2) of orthologous genes using RAxML (9) with 100 bootstrap replicates to examine the evolutionary relatedness between *E. miricola* FL160902 (GenBank accession no. NHPR00000000) and other *Elizabethkingia* genomes. The results showed that FL160902 was most closely related to CSID_3000517120, a clinical isolate of *E. miricola* from the United States sequenced by the Centers for Disease Control and Prevention (CDC) (10), revealing the potential of *E. miricola* FL160902 for pathogenicity in humans.

Before WGS was commonly used, *E. meningosep-
Elizabthekingia miricola (previously Flavobacterium meningosepticum) was found to be separated into 2 main hybridization groups, UBI and UBII, that were ~40%–55% interrelated; UBII could be further divided into 4 subgroups (11,12). However, because the isolates from different groups are phenotypically very similar, these genomic groups remain assigned at this time to *E. meningoseptica* (13). In our phylogenetic tree, UBI group *E. meningoseptica* isolates did not group with the other *Elizabethkingia* spp. and were distantly related to UBII. Considering the low DNA–DNA relatedness (<70%) between the 2 groups and phylogenomic analysis based on WGS (3,11,12), we propose that UBII are not *E. meningoseptica*. The UBII subgroups branching separately supports the view.

Figure 2. Maximum-likelihood phylogenetic tree of *Elizabethkingia miricola* FL160902 from an infected frog in Hunan Province, China, and reference genomes. The tree was constructed by using the single-copy orthologous genes of all the 38 genomes with 100 bootstrap replicates. Species identifications strictly followed the National Center for Biotechnology Information submitted names. Isolates assigned into UB groups and subgroups are according to Holmes et al. (12) and Bruun and Ursing (13). Solid circles indicate type strains; open circle indicates a former type strain. Bold indicates strain isolated in this study. Scale bar indicates nucleotide substitutions per site.
that they are different *Elizabethkingia* species (3). The UBII:1 group species *E. anophelis* and *E. endophytica* formed a clade with strong support of 100%, favoring the suggestion that *E. endophytica* is a later subjective synonym of *E. anophelis* (14). Our FL160902 isolate grouped with *E. miricola*, which is thought to be closely related to UBII:2 (3,10). The taxonomic status of *E. miricola* ATCC 33958 and BM10 should be reconsidered because they clustered with UBII:3 and not with UBII:2 *E. miricola* species. Our results agree with Eriksen’s conclusion about the genetic diversity in *Elizabethkingia*; a more comprehensive taxonomic system is needed to clarify the *Elizabethkingia* genus (3).

Conclusions

In this natural outbreak of meningitis-like disease in cultured frogs in Hunan Province, China, in 2016, *E. miricola* was the most predominant pathogen. The neuropsychiatric signs and pathologic brain lesions suggested that *E. miricola* could break through the blood–brain barrier and damage the nervous system. The etiologic analyses combined with the results of experimental challenge support the conclusion that the *E. miricola* strain represented by isolate FL160902 is highly contagious for frogs, especially by immersion infection. We suspect that contaminated water is the primary vehicle of transmission, considering the infection assay and the epidemiology in 1 farm with different ponds. However, diverse transmission routes might be involved because there is no obvious interconnectivity among independent farms, which needs to be investigated further. Close attention should be paid to whether this disease affects the wild population of amphibians. Our results indicated the gradual expansion of its host and suggest that amphibians may serve as a reservoir for infection in humans. Black-spotted frog farming is a major aquaculture industry in south-central China; thus, animals and humans that have close contact with infected frogs should be continually monitored for emerging *E. miricola* infections, even though no human *E. miricola* infection cases were reported related to frog consumption or farming in Hunan in 2016. Our results demonstrate a contagious disease in frogs caused by *E. miricola* that poses a potential zoonotic threat to humans, generating a need for consideration of the role of *Elizabethkingia* bacteria in public health.

Acknowledgments

We thank Junguang Ruan and the frog farmers for their cooperation with the sample collection. We also thank Dandan Zhao for parasite identification and Yang Liu for the excellent bioinformatics technical assistance.

This study was supported by China Agriculture Research System CARS-46, Hubei Agricultural Science and Technology Innovation Center (2016-620-007-001), Featuring Talents Cultivation Project (4006-4611300108), and Pre-research Foundation of Huazhong Agricultural University (52209-814058).

Ms. Hu is a PhD candidate at Huazhong Agricultural University, Wuhan, China. Her primary research interest is pathogenic microbiology and infectious diseases of amphibians.

References

12. Holmes B, Steigerwalt AG, Nicholson AC. DNA-DNA hybridization study of strains of *Chryseobacterium*, *Elizabethkingia* and *Empedobacter* and of other usually
indole-producing non-fermenters of CDC groups IIc, IIe, IIh and III, mostly from human clinical sources, and proposals of *Chryseobacterium bernardetii* sp. nov., *Chryseobacterium carnis* sp. nov., *Chryseobacterium lactis* sp. nov., *Chryseobacterium nakagawai* sp. nov. and *Chryseobacterium taklimakense* comb. nov. Int J Syst Evol Microbiol. 2013;63:4639–62. http://dx.doi.org/10.1099/ijs.0.054353-0

Address for correspondence: Zemao Gu, Huazhong Agricultural University–College of Fisheries, No. 1 Shizi Mountain St, Hongshan District Wuhan, Hubei 430070, China; email: guzemao@mail.hzau.edu.cn

December 2014: Zoonoses

- **V**ariably **P**rotease-**S**ensitive **P**rionopathy, a **U**nique **P**rion **V**ariant with **I**nefficient **T**ransmission **P**roperties

- **G**eographic **D**ivergence of **B**ovine and **H**uman **S**higa **T**oxin–**P**roducing *Escherichia coli* O157:H7 **G**enotypes, **N**e**w Zealand**

- **B**acterial **P**athogens **A**ssociated with **H**idradenitis **S**uppurativa, **F**rance

- **R**eplication and **S**hedding of **M**ERS-**C**oV in **U**pper **R**espiratory **T**ract of **I**noculated **D**romedary **C**amels

- **T**ransmission **C**haracteristics of **V**ariably **P**rotease-**S**ensitive **P**rionopathy

- **S**eroconversion for **I**nfected **P**athogens among **U**K **M**ilitary personnel Deployed to **A**fghanistan, **2008–2011**

- **C**irculation of **R**eassortant **I**nfluenza **A**(H7N9) **V**iruses in **P**oultry and **H**umans, **G**uangdong

- **M**olecular **E**volution of **P**este des **P**etits **R**uminants **V**irus **P**rovince, **C**hina, **2013**

- **E**ffects of **K**nowledge, **A**ttitudes, and **P**ractices of **P**rimary **C**are **P**roviders on **A**ntibiotic **S**election, **U**nited **S**tates

- **A**ccuracy of **H**erdsmen **R**eporting versus **S**erologic **T**esting for **E**stimating **F**oot-**a**nd-**M**outh **D**isease **P**revalence

- **R**esidual **I**nfestation and **R**ecolonization during **U**rban **T**riatoma **i**nfestans **B**ug **C**ontrol **C**ampaign, **P**eru

- **T**wo **A**naplasma **p**hagocytophilum **S**trains in **I**xodes **s**capularis **T**icks, **C**anada

- **F**rancisella tularensis **B**acteria **A**ssociated with **F**eline **T**ularemia in the **U**nited **S**tates

- **A**vian **B**ornavirus in **F**ree-Ranging **P**sittacine **B**irds, **B**razil

- **G**ouleako and **H**erbert **V**iruses in **P**igs, **R**epublic of **K**orea, **2013**

- **H**uman **I**nfection with **I**nfluenza **V**irus A(H10N8) from **L**ive **P**oultry **M**arkets, **C**hina, **2014**

- **M**olecular **E**pidemiology of **I**nfluenza **A**(H1N1)pdm09 **V**irus among **H**umans and **S**wine, **S**ri **L**anka

- **N**ovel **A**mdoparvovirus Infecting **F**armed **R**accoon **D**ogs and **A**rctic **F**oxes

- **N**ovel **P**orcine **E**pidemic **D**iarrhea **V**irus **V**ariant with **L**arge **G**enomic **D**eletion, **S**outh **K**orea

- **M**ERS **C**oronavirus **N**eutralizing **A**ntibodies in **C**amels, **E**astern **A**frica, **1983–1997**

- **E**quine **I**nfluenza **A**(H3N8) **V**irus **I**nfection in **C**ats

- **E**chinococcus ortleppi **I**nfections in **H**umans and **C**attle, **F**rance

- **H**uman **H**antavirus **I**nfections in the **N**etherlands

- **M**ycobacterium **S**pecies **R**elated to **M**. **l**eprae and **M**. **l**epromatosis from **C**ows with **B**ovine **N**odular **T**helitis

- **H**uman **M**etapneumovirus **I**nfection in **C**impanzees, **U**nited **S**tates

- **P**utative **N**ew **W**est **N**ile **V**irus **L**ineage in **U**ranotaenia unguiculata **M**osquitoes, **A**ustria, **2013**

- **N**ovel **B**luetongue **V**irus in **G**oats, **C**orsica, **F**rance, **2014**