
genomic subtypes (patient 7) were detected. Results from 3 
genetic methods revealed that L. pneumophila serogroup 1 
and 13 strains are closely related, although the serogroups 
differ. Results of this study were consistent with the hy-
pothesis that multiple infections are more likely with less 
virulent strains and more likely in persons with medical 
conditions predisposing them to Legionnaires’ disease (10). 

Our study of this outbreak suggests that the spa 
house was colonized by several L. pneumophila strains 
that were genetically related despite belonging to differ-
ent serogroups and that 2 strains caused infection. Further 
analysis of the divergence of outbreak strains in genomes 
related to Legionella serogroup and sequence types is 
ongoing. This analysis clarifies the in-depth genetic rela-
tions among L. pneumophila strains, such as recombina-
tion sites and periods required for divergence. We recom-
mend that the spa house provide high quality management 
and effective infection control practices according to an 
infection control manual (e.g., completion of documenta-
tion relating to infection control practices and training of 
employees) and that customers be aware of the sanitary 
status of spa houses.
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Diphyllobothriosis is reemerging because of global impor-
tation and increased popularity of eating raw fish. We de-
tected Diphyllobothrium nihonkaiense plerocercoids in the 
musculature of wild pink salmon (Oncorhynchus gorbuscha)  
from Alaska, USA. Therefore, salmon from the American 
and Asian Pacific coasts and elsewhere pose potential dan-
gers for persons who eat these fish raw. 
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The Japanese broad tapeworm, Diphyllobothrium ni-
honkaiense (Yamane, Kamo, Bylund et Wikgren, 

1986) (Cestoda: Diphyllobothriidea), is the second most 
common causative agent of diphyllobothriosis in humans; 
≈2,000 cases have been reported, mainly from northeast-
ern Asia (1). However, recent studies that used molecular 
methods indicate that the number of human cases caused 
by this tapeworm may have been highly underestimated 
(1). In addition, increasing popularity of eating raw fish is 
probably responsible for the increased number of imported 
cases in regions where this infection is not endemic (1).

In 1986, the Japanese broad tapeworm was recognized 
as a human parasite separate from the most common broad 
fish tapeworm, Diphyllobothrium latum (L.), in Japan (2). 
The validity of the Japanese broad tapeworm was later con-
firmed by molecular data, especially the cox1 gene sequenc-
es (1). Evidence indicates that virtually all previous cases of 
diphyllobothriosis in humans in Japan, South Korea, and the 
Pacific coast of Russia that were attributed to D. latum tape-
worms were caused by D. nihonkaiense tapeworms (1,3). 
Moreover, D. klebanovskii (Muratov et Posokhov, 1988) 
described from the Pacific coast of Russia was recently syn-
onymized with the Japanese broad tapeworm (1,4).

Studies on the transmission of the Japanese broad 
tapeworm in Japan and eastern Russia (Primorsky Region) 
have identified 4 species of Pacific salmon as the principal 
sources of human infection: chum salmon (Oncorhynchus 
keta), masu salmon (O. masou), pink salmon (O. gorbus-
cha), and sockeye salmon (O. nerka). These anadromous 
fish become infected in brackish water along the coast of 
the North Pacific Ocean (1,5). Tapeworm larvae infective 
for humans (plerocercoids) have been described in only a 
few studies performed in eastern Russia and Japan, (e.g., as 
plerocercoids type F from the musculature of chum salmon 
in Kamchatka, Russia) (2,6,7).

For decades, the possible occurrence of the Japanese 
broad tapeworm on the Pacific coast of North America 
was ignored; but since 2008, human infection with adult 
tapeworms and natural infection of carnivores (wolves 
and bears) with adult tapeworms have been confirmed 
by use of molecular markers (1,8–10). We report finding 
Japanese broad tapeworm plerocercoids in North Amer-
ica. Our main intent is to alert parasitologists and medi-
cal doctors about the potential danger of human infection 
with this long tapeworm resulting from consumption of 
infected salmon imported (on ice) from the Pacific coast 
of North America and elsewhere.

In July 2013, we examined 64 wild Pacific salmon 
of 5 species:1 chinook salmon (O. tshawytscha), 1 coho 
salmon (O. kisutch), 23 pink salmon, 8 rainbow trout (O. 
mykiss), and 31 sockeye salmon in south-central Alaska, 
USA. The salmon were collected by angling (under per-
mit no. SF2013–218) or obtained from local fishermen. 

The musculature was filleted to narrow slices, and internal 
organs were observed under a magnifying glass. Several 
morphotypes of diphyllobothriid plerocercoids were found, 
including a single larva in the musculature of pink salmon 
collected in Resurrection Creek (near Hope, Alaska). This 
plerocercoid, which was later identified as that of the D. 
nihonkaiense tapeworm, was found unencysted, deep in the 
musculature of the anterior part of the fish, near the spinal 
cord (Figure). It was highly motile, had a retracting sco-
lex, and measured 8–15 mm long, depending on the state of 
elongation or contraction (Figure; Video, https://wwwnc.
cdc.gov/EID/article/23/2/16-1026-V1.htm). After fixation 
with hot water, the plerocercoid was 10 mm long, had an 
elongate scolex 1.05 mm long and 0.60 mm wide, and pos-
sessed 2 narrow bothria opened on the apical end (Figure). 
The sequences of the cox1 and 28S rRNA genes (lsrDNA) 
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Figure. A) Pink salmon (Oncorhynchus gorbuscha) from 
Alaska, USA. B) Plerocercoid of Japanese broad tapeworm 
(Diphyllobothrium nihonkaiense) (arrow) deep in the muscles  
of the salmon. C) Live D. nihonka plerocercoid in saline  
(left) and scanning electron micrograph after fixation with 
 hot water; note the scolex with a long, slit-like bothrium  
opened anteriorly. 
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were almost identical to those of the Japanese broad tape-
worm available in the GenBank database (sequence simi-
larities of 99% [GenBank accession no. KY000483] and 
100% [KY000484], respectively), thus providing unequiv-
ocal support that this plerocercoid was a larva of the D. 
nihonkaiense tapeworm reported from North America.

This report provides additional evidence that salmon 
from the Pacific coast of North America may represent a 
source of human infection. Because Pacific salmon are fre-
quently exported unfrozen, on ice, plerocercoids may sur-
vive transport and cause human infections in areas where 
they are not endemic, such as China, Europe, New Zealand, 
and middle and eastern United States (1). It is probable that 
most diphyllobothriosis cases originally attributed to D. la-
tum may have been caused by D. nihonkaiense tapeworms. 
For more effective control of this human foodborne para-
site, detection of the sources of human infection (i.e., host 
associations), and critical revision of the current knowledge 
of the distribution and transmission patterns of individual 
human-infecting tapeworms are needed.
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The rate of transfusion-transmitted hepatitis E virus (HEV) 
in transplant recipients is unknown. We identified 60 HEV-
positive solid organ transplant patients and retrospectively 
assessed their blood transfusions for HEV. Seven of 60 pa-
tients received transfusions; 3 received HEV-positive blood 
products. Transfusion is not the major route of infection in 
this population.


