is unclear because of a low frequency of symptomatic infected patients. However, histopathologic changes have been reported in rectal mucos of patients infected with *N. meningitidis* (9).

N. meningitidis is highly variable because it can naturally undergo transformation, which leads to changes in virulence and transmissibility and suggests that new variants could emerge that have increased fitness for alternative/novel niches (10). This suggestion could be useful in identifying *N. meningitidis* strains with ST10866, which have been isolated from patients with anogenital infections and might be one of those variants. Whether HIV infection, with its associated immune problems, favors colonization with other microorganisms adapted to different ecologic niches has not been resolved.

Although an increased prevalence of meningococcal anogenital infections has been reported (6–8), the incidence of these infections is probably still underestimated because *N. meningitidis* might be the etiologic agent in patients with gonococcal-urethritis and proctitis. This underestimation could be caused, in part, by use of PCR as the only diagnostic method. Thus, culture is still needed for isolating strains and determining their antimicrobial drug resistance. Monitoring the incidence of meningococcal reproductive tract infections and genetic characterization are necessary to determine the magnitude and clinical role of these infections.

Dr. Gutierrez-Fernandez is a professor at the University of Granada and a microbiology clinical assistant at the University Hospital Virgen de las Nieves, Granada, Spain. His research interests are the role of infectious agents in illnesses of unknown causes and genitourinary and digestive tract infections.

References

Address for correspondence: Raquel Abad, Reference Laboratory for *Neisseria, Listeria, and Bordetella*, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera de Majadahonda, Pozuelo, KM 2.200, 28220 Majadahonda, Madrid, Spain; email: rabad@isciii.es

Association of Diabetes and Tuberculosis Disease among US-Bound Adult Refugees, 2009–2014

Stephen R. Benoit, Edward W. Gregg, Sasi Jonnalagadda, Christina R. Phares, Weigong Zhou, John A. Painter

Author affiliation: Centers for Disease Control and Prevention, Atlanta, Georgia, USA

DOI: http://dx.doi.org/10.3201/eid2303.161053

Diabetes is associated with an increased risk for active tuberculosis (TB) disease. We conducted a case–control study and found a significant association between diabetes and TB disease among US-bound refugees. These findings underscore the value of collaborative management of both diseases.
is higher and treatment outcomes are poorer among persons with diabetes (3). In 2011, the World Health Organization and the International Union Against Tuberculosis and Lung Disease developed a framework for a coordinated response to both diseases and advised screening all TB patients for diabetes (4).

Annually, ≈70,000 refugees resettle in the United States (5). Before departure, all refugees undergo a medical examination and screening for conditions of public health importance; TB is considered a priority condition (6). The Centers for Disease Control and Prevention Electronic Disease Notification (EDN) System captures data from these examinations (7). Domestic screening examinations are recommended within 3 months of arrival in the United States, and the TB component is captured in EDN.

Using EDN, we examined the association of diabetes and TB disease in our target population, which consisted of 249,037 US-bound refugees ≥18 years of age at the time of their overseas medical examination who arrived in the United States from January 1, 2009, through August 31, 2014. We excluded 187 records because of missing data. TB disease was defined as clinical or laboratory-diagnosed disease, either 1) active pulmonary or extrapulmonary TB diagnosed during the overseas examination prior to departure and treated before arrival in the United States (6) or 2) diagnosis of active TB at the domestic examination after entry into the United States.

Diabetes screening is not a requirement for admission to the United States. However, if reported by the refugee while recording the medical history or discovered during the overseas examination process, diabetes should be documented on the medical examination forms. Using text parsing techniques described previously (8), we searched for evidence of diabetes in these forms.

Demographic variables were sex, age group, living setting (refugee camp or noncamp setting), and region of nationality, which were assigned according to US Department of State categories. Body mass index was categorized as underweight (<18.5 kg/m²), normal (18.5 to <25 kg/m²), overweight (25 to <30 kg/m²), or obese (≥30 kg/m²).

We used logistic regression to assess the association of diabetes and TB and assessed effect modification between region and diabetes. Variables were included in the multivariate model if they were significant (p<0.05) in a model of diabetes only or if they were confounders, defined as variables causing a change in odds between diabetes and TB of >20%.

From January 1, 2009, through August 31, 2014, according to our case definitions, 2,262 (0.9%) of 248,850 US-bound refugees ≥18 years of age had TB, 5,767 (2.3%) had diabetes, and 56 (<0.1%) had both. Effect modification between region and diabetes was not significant. After controlling for region, sex, age group, body mass index, and living in a refugee camp, we found a significant association between diabetes and TB (adjusted odds ratio 1.7, 95% CI 1.3–2.2) (Table).

Although the link between diabetes and TB is widely accepted, previous studies showed differing strengths of association and significance (4), which could be attributed to variability in the prevalence of diabetes and TB in the population. We found a modest association between diabetes and TB disease.

Table. Characteristics of US-bound adult refugees and association of diabetes with TB disease, Electronic Disease Notification System, January 2009–August 2014*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total no. (%), N = 248,850</th>
<th>TB, no. (%), n = 2,262</th>
<th>Univariate</th>
<th>Multivariate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes</td>
<td>5,767 (2.3)</td>
<td>56 (2.5)</td>
<td>1.1 (0.8–1.4)</td>
<td>1.7 (1.3–2.2)</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Africa</td>
<td>40,731 (16.4)</td>
<td>422 (18.7)</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>East Asia and the Pacific</td>
<td>58,701 (23.6)</td>
<td>971 (42.9)</td>
<td>1.6 (1.4–1.8)</td>
<td>1.7 (1.5–1.9)</td>
</tr>
<tr>
<td>Europe and Eurasia</td>
<td>3,867 (1.6)</td>
<td>22 (1.0)</td>
<td>0.5 (0.4–0.8)</td>
<td>0.6 (0.4–1.0)</td>
</tr>
<tr>
<td>Near East</td>
<td>76,752 (30.8)</td>
<td>44 (2.0)</td>
<td>0.1 (<0.1–0.1)</td>
<td>0.1 (0.1–0.1)</td>
</tr>
<tr>
<td>South and Central Asia</td>
<td>52,677 (21.2)</td>
<td>802 (35.5)</td>
<td>1.5 (1.3–1.7)</td>
<td>1.2 (1.0–1.4)</td>
</tr>
<tr>
<td>Western Hemisphere</td>
<td>16,122 (6.5)</td>
<td>1 (<0.1)</td>
<td><0.1 (<0.1–0.1)</td>
<td><0.1 (<0.1–0.1)</td>
</tr>
<tr>
<td>Female sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18–44</td>
<td>190,141 (76.4)</td>
<td>1,391 (61.5)</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>45–64</td>
<td>45,711 (18.4)</td>
<td>600 (26.5)</td>
<td>1.8 (1.6–2.0)</td>
<td>2.6 (2.3–2.8)</td>
</tr>
<tr>
<td>65–74</td>
<td>9,397 (3.8)</td>
<td>175 (7.7)</td>
<td>2.6 (2.2–3.0)</td>
<td>3.6 (3.0–4.3)</td>
</tr>
<tr>
<td>>75</td>
<td>3,601 (1.5)</td>
<td>96 (4.2)</td>
<td>3.7 (3.0–4.6)</td>
<td>5.0 (4.0–6.3)</td>
</tr>
<tr>
<td>BMI category†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underweight</td>
<td>20,300 (8.6)</td>
<td>390 (18.3)</td>
<td>1.7 (1.5–1.9)</td>
<td>1.6 (1.4–1.8)</td>
</tr>
<tr>
<td>Normal</td>
<td>127,033 (53.7)</td>
<td>1,465 (68.8)</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>Overweight</td>
<td>58,299 (24.7)</td>
<td>233 (10.9)</td>
<td>0.3 (0.3–0.4)</td>
<td>0.5 (0.5–0.6)</td>
</tr>
<tr>
<td>Obese</td>
<td>30,731 (13.0)</td>
<td>43 (2.0)</td>
<td>0.1 (0.1–0.2)</td>
<td>0.4 (0.3–0.5)</td>
</tr>
<tr>
<td>Lived in refugee camp‡</td>
<td>88,490 (36.0)</td>
<td>1,448 (64.6)</td>
<td>3.3 (3.0–3.6)</td>
<td>1.2 (1.0–1.3)</td>
</tr>
</tbody>
</table>

*Adults were those ≥18 years of age. BMI, body mass index; TB, tuberculosis.
†Proportions based on nonmissing data; 5.0% missing data.
‡Proportions based on nonmissing data; 1.2% missing data.
This evaluation was subject to limitations. We were not able to control for all risk factors for TB (e.g., HIV), which could have affected our odds calculations. Also, because diabetes screening is not a required part of the overseas medical examination, some persons with diabetes were probably missed, leading to an underestimation of the true prevalence of diabetes in this population. In the United States, ≈28% of persons have undiagnosed diabetes (9); this number may be greater among refugees with limited access to healthcare services (10). Because diabetes was significantly associated with TB, a differential misclassification may have occurred where there was more undiagnosed diabetes among refugees with a history of TB disease. If misclassification of diabetes status did occur, these findings are an underestimation of the actual strength of association between diabetes and TB. More research, such as testing for diabetes during overseas medical examinations would allow for a more accurate assessment.

Most state refugee health programs rescreen all refugees for TB as well as other infectious diseases (e.g., hepatitis B) at the time of arrival in the United States. Some states also test for diabetes. Our findings, along with the extensive literature associating diabetes with TB, indicate that a diagnosis of TB disease in a patient should trigger testing for diabetes to optimize treatment. In states that already screen for both diseases, further research could lead to promising innovation in collaboratively managing the 2 diseases.

Dr. Benoit is a medical epidemiologist in the Division of Diabetes Translation, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia. His research interests include public health surveillance and complications of chronic diseases.

References

Address for correspondence: Stephen R. Benoit, Centers for Disease Control and Prevention, 4770 Buford Hwy, Mailstop F75, Atlanta, GA 30341-3717, USA; email: bvy8@cdc.gov

Molecular Verification of New World Mansonella perstans Parasitemias

Lucyanne Bastos Tavares da Silva,¹
James Lee Crainey,¹ Túlio Romão Ribeiro da Silva, Uziel Ferreira Suwa, Ana Carolina Paulo Vicente, Jansen Fernandes de Medeiros, Felipe Arley Costa Pessoa, Sérgio Luiz Bessa Luz

Author affiliations: Fundação Oswaldo Cruz Amazonia Instituto Léonidas e Maria Deane, Amazonas, Brazil (L.B. Tavares da Silva, J.L. Crainey, T.R. Ribeiro da Silva, U.F. Suwa, F.A.C. Pessoa, S.L. Bessa Luz); Fundação Oswaldo Cruz Instituto Oswaldo Cruz, Rio de Janeiro, Brazil (A.C. Paulo Vicente); Fundação Oswaldo Cruz Rondônia Laboratório de Entomologia, Rondônia, Brazil (J. Fernandes de Medeiros)

DOI: http://dx.doi.org/10.3201/eid2303.161159

We obtained ribosomal and mitochondrial DNA sequences from residents of Amazonas state, Brazil, with Mansonella parasites. Phylogenetic analysis of these sequences confirm that M. ozzardi and M. perstans parasites occur in sympathy and reveal the close relationship between M. perstans in Africa and Brazil, providing insights into the parasite’s New World origins.

¹These authors contributed equally to this article.