An interferon-γ response was detected against mycobacterial antigens, and lung tissue was positive for *Mycobacterium bovis*. This case highlights the risk that tuberculosis presents to rhinoceros in *M. bovis*-endemic areas.

Black rhinoceroses (*Diceros bicornis*) are under severe threat from poaching and habitat loss. This species has been designated as critically endangered by the International Union for Conservation of Nature Red List (1). An estimated population of 5,000–5,445 animals are found in southern and eastern Africa, with just over 1,200 of those in South Africa (2). In Kruger National Park (KNP) in South Africa, the black rhinoceros population size is estimated at 400. KNP is considered an endemic area for *Mycobacterium bovis*, with cases reported in at least 12 wildlife species, including African buffalo, lion, kudu, and warthog (3).

Sporadic cases of tuberculosis (TB) caused by *M. tuberculosis* or *M. bovis* have been reported in black rhinoceros housed in zoos or under semi-intensive management (4). Although *M. bovis* is present in livestock and other wildlife species in countries in Africa where rhinoceros populations are currently present, no cases of TB have been reported in free-ranging black rhinoceroses.

On June 17, 2016, rangers in KNP reported a weak, emaciated, adult female black rhinoceros that had been stationary for 36 hours in the southern area of the park (25°7′16″S, 31°55′2′″E). The discovery of this animal might have resulted from increased surveillance related to poaching. When veterinary staff arrived, the rhinoceros was unresponsive and recumbent and lifted its head only when darted. External injuries were not obvious. Because of its poor prognosis, the animal was euthanized after being immobilized. Postmortem examination revealed an emaciated animal (body condition score 1 out of 5, http://www.daff.qld.gov.au/__data/assets/pdf_file/0015/53520/Animal-HD-Investigation-Condition-scores.pdf) with a subjectively heavy ectoparasite load. The subcutaneous and internal fat stores were reduced, consistent with the poor general body condition. Although teeth were worn, they appeared sufficient for mastication, and well-chewed ingesta was found in the gastrointestinal system. No grossly abnormal changes were found in the organs examined, except for the lungs and lymph nodes. On palpation of the lungs, numerous firm, focal, and irregular masses, 1–6 cm in diameter, were present in the right and left dorso-cranial two thirds of the lung lobes, with symmetric lesion distribution. On cut section, most lesions had a fibrous capsule and contained creamy necro-caseous material. Impression smears from the lung lesions revealed numerous acid-fast bacilli.

Mycobacterium bovis

M. bovis is a pathogenic bacterium that causes tuberculosis in a wide range of animals, including humans. It is a soil-dwelling bacterium that can survive in harsh conditions for long periods. It is primarily transmitted through the respiratory route and can cause chronic, often fatal, disease in infected animals. In this case, the black rhinoceros was found to be infected with *M. bovis*, which indicated a risk to other wildlife species in the park.

Wildlife Management and Conservation

The case highlights the challenges faced by wildlife managers in protecting endangered species from disease threats. This emphasizes the importance of monitoring wildlife health, especially in areas with high poaching pressure. It also underscores the need for enhanced surveillance and rapid response measures to prevent the spread of diseases such as tuberculosis among wild populations.

Human Health Implications

While the main focus of this case is on the rhinoceros, the presence of *M. bovis* in a wild animal can also pose risks to human health, particularly in countries where wildlife and human populations overlap. This case serves as a reminder of the potential for disease transmission from wild to domesticated species and the need for robust epidemiological monitoring.

1These authors contributed equally to this article.
We acknowledge South African National Parks staff, especially Leana Rossouw, Guy Hausler, and Tebogo Manamela, for providing assistance with this case, as well as the State Veterinary Services of Kruger National Park.

Research protocols were approved by the South African National Park Animal Use and Care Committee. This study was supported by the National Research Foundation South African Research Chair Initiative in Animal Tuberculosis (grant no. 86949).

Dr. Miller is currently the South African Research Chair in Animal Tuberculosis in the National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research at Stellenbosch University. She investigates multiple aspects of animal TB.

Acknowledgments
We acknowledge South African National Parks staff, especially Leana Rossouw, Guy Hausler, and Tebogo Manamela, for...