Zika Virus Vector Competency of Mosquitoes, Gulf Coast, United States

Charles E. Hart,1 Christopher M. Roundy,1 Sasha R. Azar, Jin H. Huang, Ruimei Yun, Erin Reynolds, Grace Leal, Martin R. Nava, Jeremy Vela, Pamela M. Stark, Mustapha Debboun, Shannan Rossi, Nikos Vasilakis, Saravanan Thangamani, Scott C. Weaver

Author affiliations: University of Texas Medical Branch, Galveston, Texas, USA (C.E. Hart, C.M. Roundy, S.R. Azar, J.H. Huang, R. Yun, E. Reynolds, G. Leal, S. Rossi, N. Vasilakis, S. Thangamani, S.C. Weaver); Harris County Public Health, Houston, Texas, USA (M.R. Nava, J. Vela, P.M. Stark, M. Debboun)

DOI: http://dx.doi.org/10.3201/eid2303.161636

Zika virus has recently spread throughout the Americas. Although *Aedes aegypti* mosquitoes are considered the primary vector, *Culex quinquefasciatus* and mosquitoes of other species may also be vectors. We tested *Cx. quinquefasciatus* and *Ae. taeniorhynchus* mosquitoes from the US Gulf Coast; both were refractory to infection and incapable of transmission.

Although most human Zika virus infections produce no symptoms or only mild febrile illness, the association with microcephaly and other severe congenital defects has caused a public health crisis since the virus arrived in the Americas. Part of the concern is local, mosquito-borne transmission in the United States. Since the virus arrived in the Americas, both microcephaly and other severe congenital defects has caused a public health crisis. Part of the concern is local mosquito-borne transmission in the United States. Although most human Zika virus infections produce no symptoms or only mild febrile illness, the association with microcephaly and other severe congenital defects has caused a public health crisis since the virus arrived in the Americas. Part of the concern is local mosquito-borne transmission in the United States.

Mosquitoes of this species are widely distributed in North, Central, and South America, and their mammalophilic feeding behavior could enable transmission of arboviruses among humans.

To determine if *Cx. quinquefasciatus* mosquitoes are capable of Zika virus transmission, we fed cohorts of 50 mosquitoes (colonized and reared in an insectary) artificial blood meals containing 10⁴ to 10⁶ focus-forming units (FFU)/mL of virus prepared in Vero cell culture. Fully engorged mosquitoes were fed to the mosquito cohorts: FSS13025 (2010 Cambodia, closely related to strains from the Americas), DAKAR41525 (1985 Senegal), and MEX1–7 (isolated from a 2015 outbreak in Mexico). On days 3, 7, and 14 after feeding, we homogenized bodies and legs from 20 mosquitoes and tested them for Zika virus by focus-forming assay; on days 7 and 14, we also tested saliva.

Because natural blood meals from viremic animals are typically more infectious for mosquitoes than are artificial meals, we allowed 3 groups of *Cx. quinquefasciatus* mosquitoes to feed on FSS13025-infected type I interferon-receptor knockout A129 mice on postinfection days 1, 2, and 3, corresponding to viremia titers of 10⁴, 10⁵, and 10⁶ FFU/mL, respectively, as determined by back-titration of mouse blood collected immediately after feeding. A separate mouse was used for each infection. On days 3, 7, and 14, we subjected mosquito bodies, legs, and saliva to focus-forming assay. All samples were also negative for Zika virus (Table).

To preclude the possibility that laboratory colonization diminished *Cx. quinquefasciatus* mosquito competence for Zika virus transmission, we collected F2 mosquitoes from the Houston area and also allowed them to feed on A129 mice 2 days after infection with FSS13025, MEX1–7, or Puerto Rico strain PRVABC59, with viremia titers of 10⁴, 10⁵, and 10⁶ FFU/mL, respectively. None of the bodies, legs, and saliva samples collected 14 days after feeding were positive for Zika virus.

Ae. taeniorhynchus mosquitoes were also tested for Zika virus transmission competence. Colonized mosquitoes were fed artificial blood meals containing 10⁴ FFU/mL Zika virus (strain MEX1–44), and on days 10 (n = 20) and 17 (n = 20), salivary glands, legs, and midguts were dissected and screened for virus by infectious assays (3). None of the mosquito samples was positive for Zika virus (Table).

Our results concur with those of others showing the inability of Zika virus to infect *Culex* spp. mosquitoes.
We also found that *Ae. taeniorhynchus* mosquitoes from the Gulf Coast are refractory to Zika virus infection. The Zika virus strains and standard stocks used for our experiments were infectious for *Ae. aegypti* mosquitoes in other experiments (C. Roundy et al., unpub. data), indicating that our negative findings for *Cx. quinquefasciatus* and *Ae. taeniorhynchus* mosquitoes represent truly refractory phenotypes. These results, along with findings from an outbreak in southern Mexico (5), support the conclusion that *Ae. aegypti* mosquitoes are the primary urban Zika virus vectors. However, regional variation in competence could be reflected in the study from China that shows Zika virus presence in saliva after experimental infection (6). Additional research is needed to understand whether this putative geographic variation reflects mosquito genetics or other intrinsic factors, such as microbiome or microvirome populations within this species. Because some studies indicate that *Cx. quinquefasciatus* mosquitoes are more ornithophilic than mammalophilic, including in parts of China (10), their feeding habits in regions where they are transmission competent require evaluation to assess their true capacity as vectors.

This work was supported by a pilot grant by the Institute for Human Infections and Immunity (R24AI120942, 1U01AI115577). Mr. Hart and Mr. Roundy are graduate students in the Human Pathophysiology and Translational Medicine program at the University of Texas Medical Branch. Their research interests include vector biology and arboviruses transmitted by mosquitoes.

References

Address for correspondence: Saravanan Thangamani or Scott C. Weaver, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-0620, USA; email: sathanga@utmb.edu or sweaver@utmb.edu

Correction: Vol. 22, No. 7

The name of author Felix Drexler was misspelled in Hepatitis E Virus Infection in Dromedaries, North and East Africa, United Arab Emirates, and Pakistan, 1983–2015 (A. Rasche et al.). The article has been corrected online (https://wwwnc.cdc.gov/eid/article/22/7/16-0168_article).

Correction: Vol. 23, No. 2

The key in the Figure 1 inset should have referred to hepatitis A and E in Changing Epidemiology of Hepatitis A and Hepatitis E Viruses in China, 1990–2014 (X. Ren et al.). The article has been corrected online (http://wwwnc.cdc.gov/eid/article/23/2/16-1095_article).