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As public health agencies struggle to track and contain 
emerging arbovirus threats, timely and efficient surveillance 
is more critical than ever. Using historical dengue data from 
Puerto Rico, we developed methods for streamlining and 
designing novel arbovirus surveillance systems with or with-
out historical disease data.

Mosquitoborne viruses in the families Flaviviridae and 
Togaviridae cause substantial illness and death world-

wide (1,2). Dengue is the most widespread arboviral disease, 
with an estimated 70–140 million cases occurring annually 
(3). Despite the large public health and economic costs of ar-
boviruses, effective medical countermeasures are limited (1). 
Globally, primary arbovirus prevention and control efforts 
include personal protection, mosquito control, and clinical 
treatment. The success of these efforts depends on timely and 
accurate situational awareness: knowing spatiotemporal pat-
terns of exposure, infection, and severity. 

Puerto Rico has an islandwide passive dengue surveil-
lance system similar to those found in other regions with 
endemic dengue (4). Healthcare providers (clinics or hospi-
tals) report suspected dengue cases and submit blood sam-
ples for laboratory diagnosis. This comprehensive system 
captures spatiotemporal variation in incidence and enables 
characterization of circulating viruses, but it requires sub-
stantial resources and may lack efficiency.

Here, we extend a previous approach (5) to designing 
dengue surveillance systems with 4 sets of specific pub-
lic health objectives: real-time estimation of island-wide 
dengue cases, regional dengue cases, island-wide cases of 
each dengue virus serotype, and all three preceding quanti-
ties combined. Using dengue case data from 1991 through 
2005, we identified a surveillance system including a sub-
set of Puerto Rican providers that was expected to achieve 
these objectives efficiently and demonstrated the robust-
ness of that system with data for 2006–2012.

The Study
Across Puerto Rico, we analyzed the weekly number of 
suspect cases, laboratory-positive cases, and cases of each 
serotype reported during 1991–2012. For each case, we 
considered the patient’s municipality of residence and the 
identity of the reporting provider.

In designing a multipurpose dengue surveillance system, 
we sought to identify a small subset of providers that can pro-
vide accurate situational awareness. However, it is computa-
tionally unfeasible to evaluate all possible combinations of 
providers. Our procedure for solving this computational issue 
is described in the following sections, with a detailed descrip-
tion in the online Technical Appendix (https://wwwnc.cdc.
gov/EID/article/23/4/16-0944-Techapp1.pdf).

Building from previous research (6), we design sur-
veillance systems by sequentially adding providers that 
most improve system performance. To evaluate the per-
formance of a system with respect to an objective, we re-
peatedly perform the following: fit multilinear models to 
historical reported dengue cases, use the fitted models to 
estimate dengue cases in another historical time period 
(one not used in model fitting), and quantify accuracy by 
using the coefficient of determination (R2) resulting from a 
linear regression of the estimated on the actual time series. 
In each repetition, we used a different combination of train-
ing data and testing data, and average all the scores across 
repetitions (denoted as Ȓ2). That is, we chose the set of pro-
viders that achieved the highest average out-of-sample per-
formance (see, e.g., online Technical Appendix Figure 1).

We compared our results to 3 systems in which provid-
ers were selected without historical disease data. Specifi-
cally, we selected providers on the basis of the population 
within 20 miles of a provider (proposed by Polgreen et al. 
[7]), the total number of patients seen (proposed by Mandl 
et al. [8]), and the diversity of the municipality of residence 
for patients, which does not require that each provider see an 
even distribution of patients; rather, providers are incorpo-
rated sequentially to achieve geographic complementarity.

We constructed surveillance systems ranging from 1 
through 75 providers by using the selection algorithm for 
4 objectives: island-wide cases (Island), island-wide cases 
for each of the 4 dengue virus serotypes (Serotype), health 
region-specific cases for all 8 health service regions (Re-
gional), and all objectives combined (Multi-objective). We 
assessed 3 alternative systems: population coverage (Popu-
lation), patient volume (Volume), and patient geographic 
diversity (Diversity). The Multi-objective system reached 
99% of maximum accuracy with just 22 providers (online 
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Technical Appendix Figure 2) and performed almost as 
well as the systems designed specifically to achieve each 
objective individually (Figure 1). The Diversity system 
achieved 99%, 92%, and 90% of the performance of the 
systems specifically engineered for estimating island-wide, 
serotype, and regional cases, respectively, and showed 
similar geographic patterns to the Multi-objective system 
(online Technical Appendix Figure 3). For individual se-
rotypes and regions, performance was best for objectives 
with less sparse data (online Technical Appendix Figure 4).

Finally, we assessed the robustness of the Multi-objective  
system, which offered the strongest combination of efficiency  

and performance. We tested it against 7 additional years’ 
worth of data that were withheld from the analysis. The system 
performed well for each of the objectives (Figure 2), achieving 
average values of 0.86 and 0.78 for surveillance of individual 
serotypes and regions, respectively, and 0.97 for surveillance 
of island-wide cases. Among individual serotypes and re-
gions, all had values greater than 0.75, except for the Fajardo 
region, where cases were particularly sparse. 

Conclusions
Surveillance systems are widely used to support public 
health efforts, but they are rarely designed systematically to 
achieve clear, quantifiable objectives or surveillance goals, 
and to do so efficiently. Articulating such public health ob-
jectives is a critical first step toward evaluating, improving, 
and streamlining surveillance. Here, we applied a rigorous, 
quantitative approach to design a dengue surveillance sys-
tem that efficiently achieves several distinct public health ob-
jectives. The method flexibly and robustly maximizes infor-
mation collected while minimizing the effort required. In this 
application, we built a multi-objective system that efficiently 
tracks the spatiotemporal patterns of dengue in Puerto Rico. 
This system is almost as informative as the systems we op-
timized to achieve individual objectives, and it maintained 
its expected performance on recent data that were withheld 
during the design stage.

Although surveillance goals and resources may be 
highly specific to the disease threat and region of concern, 
the proposed optimization method can be applied broadly 
to enhance the detection of infectious disease threats, as 
we have shown now for both dengue and influenza (5). 
We hypothesize that the systems we designed for dengue 
in Puerto Rico may also serve well for other arboviruses 
transmitted by Aedes spp. mosquitoes, given their similar 
transmission mechanisms and the strong out-of-sample 
performance of the system. In some cases, additional data 
(e.g., mosquito or nonhuman host surveillance) and public 
health goals (e.g., vector density) could be integrated into 
the systems. Such data were not available for this study. 
For newly emerging arboviruses, when historical data are 
not available, systems optimized for similar pathogens may 
provide reasonable coverage. Nonetheless, emergence dy-
namics may have more sporadic and explosive characteris-
tics that may not be captured by a system designed to track 
spatiotemporal patterns of an endemic disease.

Public health authorities seek situational awareness at 
multiple geopolitical scales as well as early warning of anom-
alous events across a wide spectrum of biologic threats be-
yond arboviruses. The method we present can also be used to 
redesign existing surveillance systems by manually including 
or excluding providers during optimization. Additionally, the 
method is well suited to integrating diverse data streams, such 
as climatic, mosquito vector, pharmacy, or digital data (9).

	 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 23, No.4, April 2017	 643

Figure 1. Relative surveillance system performance. The 
performance of the 4 optimized surveillance systems (Island, 
Regional, Serotype, and Multi-objective) compared with 3 
alternative designs (Population, Volume, and Diversity), with 
respect to estimating A) island-wide cases, B) serotype-specific 
cases, and C) regional cases. Each system contains 22 providers. 
Systems are ordered from highest to lowest performance in each 
graph. Performance is measured by average out-of-sample across 
100 different 3-year periods, resulting from linear regression of 
target time series (e.g., island-wide cases) on time series of cases 
occurring within the specified surveillance system.



DISPATCHES

In an era of “right-sizing,” quantitative development 
and evaluation are critical to the design, redesign, justifi-
cation, and benchmarking of surveillance efforts. Given  

limited public health budgets on all scales, methods such as 
the one we present are critical to the future reliability and 
sustainability of infectious disease surveillance.
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Figure 2. Independent evaluation of performance. The 22-provider 
Multi-objective surveillance system was designed using data 
before 2006 and then evaluated on data for 2006–2012 with 
respect to surveillance of A) island-wide, B) serotype-specific, and 
C) regional cases. Surveillance estimates from the 22-provider 
system (red) are compared with raw data from the complete 
passive surveillance system of 105 providers (black).
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Methods 

Simulating Provider Data, 1991–1998 

The identities of the submitting providers were not included in dengue reports before 

1999. However, these identities are critical to our optimization methods. Thus, we used a 

simulation method to assign each pre-1999 case to a specific provider, based on post-1999 data 

linking providers to patient municipalities. Each pre-1999 report was either assigned to a known 

provider or designated as unknown, as follows: 

1) Estimating the fraction of cases with known and unknown providers for each 

municipality. During 1999–2005, a weekly average of 10% of the reported suspected cases did 

not identify a provider (range 0%–37%), with the proportion varying by municipality and 

increasing at times of high case volumes. For each municipality, we stratified the 1999–2005 

reports into 5 equal-width bins based on the observed island-wide cases when each case was 

reported. Then, for each municipality (m)-cases bin (b) combination, we calculated the 

proportion of cases with a known provider (km,b). 

2) Estimating distribution of cases across providers, for each municipality. Using 1999–

2005 case reports with known providers, we calculated the fractions of cases in each of the 78 

municipalities (m) that were reported by each of the 105 providers (p)(am,p). 

3) Assigning pre-1999 cases to providers. For the 1991–1998 data, which contain the 

patient’s municipality of residence but not the reporting provider, we simulated provider 

identities by multiplying the quantities described in the first two steps. That is, the number of 

cases from a given municipality (m) assigned to a given provider (p) for a given time period 

depended on the island-wide cases at the time (b), and was set equal to the product of the total 

number of dengue cases reported in m during that period, the estimated fraction of cases from 

that municipality with a known provider (km,b), and the estimated fraction of dengue cases from 

m seeking care from p (am,p). Last, fractional cases were rounded to integers. 

http://dx.doi.org/10.3201/eid2304.160944
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Surveillance Objectives 

For each of the surveillance objectives, we formulated specific quantities to be estimated 

from the surveillance data: for island-wide cases, the total number of laboratory-positive cases by 

week; for serotype cases, the total number of cases of each of the 4 serotypes reported by week; 

and for regional cases, the number of confirmed cases in each of the 8 health service regions by 

week. 

In designing a multipurpose dengue surveillance system, we sought to identify a 

relatively small subset of providers that could provide accurate real-time estimates of these 

quantities. However, it is computationally unfeasible to evaluate all possible combinations of 

providers. For example, an exhaustive analysis of all subsets of 75 providers from the full set of 

105 providers would require 1.6  1026 evaluations. Rather than performing an exhaustive 

search, we used a more efficient procedure for identifying providers for inclusion in the 

surveillance system, as described in the following sections. 

Surveillance System Optimization 

We designed surveillance systems using a greedy algorithm that sequentially adds 

providers that most improve the performance of the system. Starting with the set of all possible 

providers P (in this case, all clinics in Puerto Rico historically reporting dengue cases), we 

selected a set of providers, S, which initially has no members. At each step, we added the 

provider that is expected to yield the highest value of our objective function, f . 

The Objective Function 

To evaluate the performance of a given system (set of providers S) with respect to the 

surveillance objectives listed previously, we repeatedly performed the following three-step 

procedure: 1) fit multiple linear models relating historical data from the surveillance system in 

question to actual dengue cases, 2) use the fitted models to estimate dengue cases in another 

historical time period (that was not included in the model fitting procedure), and 3) quantify the 

accuracy of those estimates. In each repetition, we used a different combination of training data 

and testing data, and ultimately combined all the accuracy estimates (across all objectives and 

repetitions) into a single objective function. 
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Our overarching surveillance objective was a set, G, of up to 13 different subobjectives, g 

(estimating dengue cases across the whole island, in each of the 8 geographic regions, and for 

each of the 4 different serotypes). When evaluating a subset of providers, S, we fit multiple linear 

models (one per subobjective) given by 

Sθ(g, S): Yg,t = ag + bs,gXs,g,t + εt,s 

to the testing data, where Yg,t are the actual cases with respect to objective g at time t (for 

example, island-wide dengue virus serotype 1 (DENV-1) cases in a particular week), Xs,g,t are the 

cases with respect to objective g reported by provider s at time t, ag and bs,g, are the model 

coefficients, and εt is a zero-mean normally distributed error term. 

After estimating the coefficients of each subobjective model by using the training data, 

we used the models to predict the case quantities during the testing period and quantify the 

accuracy of the predictions by calculating R2 values. Ultimately, we aggregated the accuracy 

measurements into the single objective function given by f (S, G, D) 

 R2(θ(g, S), d)wgwd, gG dD 

where R2(θ(g, S), d) represents the out-of-sample performance of system S on objective g with 

testing-training data combination d; D represents the set of testing-training data combinations 

used in the evaluation; and wg and wd are weights indicating the contribution of each objective 

and dataset to the objective function, where each sum to 1, gG wg = 1 and dD wd = 1. For 

simplicity we refer to R (θ(g, S), d) as R′. 

We built surveillance networks for 4 different objective functions (each consisting of a 

distinct combination of subobjectives): 1) overall island-wide cases (Island), 2) island-wide cases 

for each of the 4 DENV serotypes, with each serotype given a 1/4 weight (Serotype), 3) regional 

dengue cases for each of the 8 health service regions, with each region given a 1/8 weight 

(Regional), and 4) the 3 prior objectives weighted equally (Multi-objective), resulting in weights 

of 1/12 for each serotype case, 1/32 for each regional case, and 1/3 for each island-wide case. 
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Provider Selection Algorithm 

At each step in the optimization, we considered all providers that had not yet been 

included in the system, and selected the one that produced the maximum value of f. Let Sn denote 

the surveillance system at step n in the optimization. The iterative selection proceeds as follows: 

1) For each provider x  P|x / Sn, create a candidate system Sn,x = {Sn, x} and calculate f 

(Sn,x, G, D). 

2) Identify the provider x that maximizes the expected improvement in performance f 

(Sn,x, G, D)f (Sn, G, D). 

3) Add x to S. 

4) Repeat. 

Volume-based design: We selected providers sequentially based on the total number of 

patients seen during 1990–2005. 

Diversity-based design: We used a greedy algorithm to maximize the Shannon diversity 

index, H, of the municipality of residence for patients captured by the surveillance system S. If 

there are M municipalities and the proportion of patients in S from municipality i is pi, then the 

Shannon diversity for S is: 

HS =   pi ln pi 

This quantity is maximized when pi = 1/M, that is, when the municipalities contribute 

equal numbers of patients to S. This does not require that each provider see a uniform 

distribution of patients, and providers are incorporated sequentially to achieve geographic 

complementarity. This procedure resembles the Population-based model, but maximizes the 

diversity of patient residences rather than the number of patients. 
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Technical Appendix Figure 1. Provider selection for dengue surveillance in the Mayaguez health service 

region. To design a system for regional-level dengue surveillance, we evaluated the performance of 

different combinations of providers across each of the 8 health service regions. This figure illustrates a 

single step in the selection process for one of the health service regions after 1 provider has already been 

included. Dengue incidence in the Mayaguez region is shown in black for the period of 1991–2005, and 

serves as the response variable in the regression-based provider selection method. The panels show 3 

candidate providers under evaluation for subsequent inclusion as the second provider selected for the 

system. We combined data from each candidate with data from the first provider already incorporated in 

the system. We then performed linear regression of total Mayaguez incidence on the combined data 

during the 1991–1996 and 2000–2005 time periods (blue), and made out-of-sample predictions (red). 

Performance is quantified by the out-of-sample R2. This process is repeated 100 times with random 3-

year intervals withheld for out-of-sample evaluation. The candidate provider delivering the highest 

average R2 across the 100 trials is selected for inclusion. In this example, the provider associated with the 

bottom panel is more informative than the alternatives. 
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Technical Appendix Figure 2. Performance curves for optimized dengue surveillance systems. As 

providers are added to the systems, A) estimation of island-wide, regional, and serotype cases improves 

and then levels, as quantified by average out-of-sample R2, whereas B) the proportion of DENV cases 

occurring at providers within the system increases more gradually. Some providers were estimated to 

have reported either zero or very nearly zero cases during the study period, which is why the proportion 

of cases covered does not increase with each additional provider. The maximum performance remains 

less than 1. 

 

Technical Appendix Figure 3. Location and patient geographic diversity of selected providers. The 22 

providers selected A) under multi-objective optimization (Multi-Objective) and B) when maximizing the 

geographic diversity of patients (Diversity) are indicated in red and the remaining 92 providers in black. 

Circle size reflects the Shannon diversity of patient municipalities of a given provider. The lines indicate 
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the boundaries of the Puerto Rico health regions. The islands of Culebra and Vieques (right) are part of 

the Fajardo health region (northeastern corner). 

 

Technical Appendix Figure 4. Performance decreases as sparsity of training data increases. For each 

of the 13 different surveillance subobjectives (island-wide incidence, incidence in each of the 8 health 

service regions, and incidence for each of the 4 serotypes), we plot the average out-of-sample R2 for the 

best combination of 22 providers against the proportion of weeks with zero reported cases in the training 

period time series data (1991–2005). For example, for dengue virus serotype 1 (DENV-1), we find the 

combination of 22 providers that maximizes performance, and plot the resulting performance against the 

proportion of weeks during 1991–2005 without a reported case of laboratory-confirmed DENV-1. 

Performance is measured by average out-of-sample R2 across 100 different 3-year periods, resulting from 

linear regression of a target time series (e.g., all DENV-1 cases) on the time series of cases occurring 

within the candidate set of providers. The least-squares regression line relating performance to data 

quality is plotted (blue dashes). 

 


