
Eugenia Lo, Kristie Nguyen, Jennifer Nguyen, Elizabeth Hemming-Schroeder, Jiaobao Xu, Harrisone Etemesi, Andrew Githeko, Guiyun Yan

In Africa, control programs that target primarily Plasmodium falciparum are inadequate for eliminating malaria. To learn more about prevalence and genetic variability of P. malariae in Africa, we examined blood samples from 663 asymptomatic and 245 symptomatic persons from western Kenya during June–August of 2014 and 2015. P. malariae accounted for 5.3% (35/663) of asymptomatic infections and 3.3% (8/245) of clinical cases. Among asymptomatic persons, 71% (32/45) of P. malariae infections detected by PCR were undetected by microscopy. The low sensitivity of microscopy probably results from the significantly lower parasitemia of P. malariae. Analyses of P. malariae circumsporozoite protein gene sequences revealed high genetic diversity among P. malariae in Africa, but no clear differentiation among geographic populations was observed. Our findings suggest that P. malariae should be included in the malaria elimination strategy in Africa and highlight the need for sensitive and field-applicable methods to identify P. malariae in malaria-endemic areas.

Over the past decade, malaria control strategies in Africa have reduced the number of malaria cases and deaths. Nevertheless, non-Plasmodium falciparum malaria still presents a major challenge for malaria elimination (1,2). Global malaria elimination programs focus primarily on P. falciparum. Recent research efforts and control programs have drawn resources to P. vivax malaria. By contrast, P. malariae and P. ovale receive little attention, and malaria caused by these organisms is among the most neglected tropical diseases (3). In those rural areas of Africa where malaria is most common, affordable diagnostic tools are rapid diagnostic tests and microscopy, but they are not effective for detecting these 2 species, mainly because parasitemia with these species is low (4–6). As a result, P. malariae and P. ovale infections are often underestimated, and epidemiologic information, such as distribution and prevalence of these species in malaria-endemic areas, is lacking. This knowledge is essential for implementation of specific strategies for monitoring and eliminating all types of malaria where it is endemic to Africa.

Although P. malariae infection is often asymptomatic and rarely leads to severe clinical illness or death, this species causes a low-grade chronic infection that persists for decades and is associated with nephropathy and anemia (7–9). The persistence, as well as submicroscopic features of P. malariae, have contributed to intermittent outbreaks of malaria in the Colombian Amazon region (10). In addition, P. malariae can cause irreversible stage 5 kidney failure (11). The prevalence of this species may increase the risk for kidney injuries and impair renal function, particularly in children with no immunity against P. malariae. Ample evidence shows peak prevalence for severe and uncomplicated clinical P. falciparum malaria among infants and children in sub-Saharan Africa (12–14). Contrary to this age pattern, patients with P. malariae infections in Papua, Indonesia, were older (median 22 years of age) than those with non-P. malariae infections (e.g., P. vivax; median 10 years of age) (9). Knowledge of the age patterns of patients with P. malariae infection is critical for understanding its epidemiology and developing effective preventative strategies.

Compared with the distribution of P. falciparum and P. vivax, the distribution of P. malariae is relatively sparse and variable. P. malariae is endemic to West Africa (3), South America (15), Asia (16,17), and the western Pacific region (18,19). Knowledge of genetic variation among isolates from these geographic areas is still lacking. One study indicated a remarkably low level of sequence diversity at the msp1 locus in P. malariae from Brazil (20). Similarly, the lack of variation at the dhfr and dhps loci has been shown for P. malariae from Asia and the western Pacific region (21,22). These findings suggested that antimalarial drugs might be imposing selective pressure on the genetic diversity of P. malariae. The circumsporozoite protein (csp) gene, which is known to be critical for plasmodia sporozoite motility and hepatocyte invasion (23), has been shown to be variable in length and is a sequence of the tandemly...
repeated peptide units in *P. falciparum* (24,25), *P. vivax* (26,27), and *P. malariae* isolates from Central Africa (28). The vast antigenic variation observed in *P. falciparum* as a result of immune selection pressure can influence the capacity of mosquito transmission and the effectiveness of malaria vaccine (29). In this study, we sought to determine the prevalence of infection and age distribution of persons with asymptomatic and symptomatic *P. malariae* infection in western Kenya, the genetic affinity between *P. malariae* isolates from East Africa and other regions, and the level of *csp* gene diversity among *P. malariae* and the significance of this diversity.

Scientific and ethical clearance was given by the institutional scientific and ethical review boards of the Kenya Medical Research Institute and the University of California Irvine. Written informed consent/assent for study participation was obtained from all consenting heads of households, parents/guardians (for minors <18 years of age), and each person who was willing to participate in the study.

Materials and Methods

Study Areas and Participants

During June–August of 2014 and 2015, blood samples were collected from persons in 4 villages at the Lake Victoria basin (elevation =1,000 m) of western Kenya (Figure 1). These villages represent parts of the Lake Victoria area previously shown by nested and quantitative PCR (qPCR) methods to have high, stable rates of malaria transmission and prevalence (10%–40%) among children 5–14 years of age (30,31).

Community samples were collected from nonfebrile schoolchildren in 7 public primary schools (70–100 children/school, 2 schools/village except Kombewa). An equal number of boys and girls 6–15 years of age were randomly selected from each school. To determine *P. malariae* prevalence in the adult population, we randomly selected 63 persons (32 male and 31 female) >15 years of age from 18 households in Kombewa. We examined a total of 663 samples from the communities, which provided an estimation of 4% margin of error in parasite prevalence with 0.05 type I error. At the time of sampling, none of these persons exhibited fever or malaria-related symptoms.

Clinical samples were collected from 113 male and 132 female patients, <1 to 76 years of age, in 3 district hospitals. This sample size provided an estimation of 6% margin of error in parasite prevalence with 0.05 type I error. These patients had fever or malaria-related signs or symptoms and were determined to be positive for *Plasmodium* spp. by microscopy at the time of sampling. Thick and thin blood smears were prepared for microscopic examination to determine the *Plasmodium* species, and ≈50 µL blood was blotted onto Whatman 3MM filter (Sigma Aldrich, St.

Louis, MO, USA) papers. Filter papers were air dried and stored in zip-sealed plastic bags with silica gel absorbent at room temperature until DNA extraction.

Microscopy and PCR of Plasmodium spp.

We examined slides under microscopes at 100× magnification and counted the number of parasites per 200 leukocytes. A slide was considered negative when no parasites were observed after counting >100 microscopic fields. At the time of sample collection, all slides were read by 2 microscopists. If counts were discordant, the slides were examined by a third microscopist. The density of parasitemia was expressed as the number of asexual parasites per microliter of blood, assuming a leukocyte count of 8,000 cells/µL, according to World Health Organization guidelines.

We extracted parasite DNA from half of a dried blood spot by using the Saponin/Chelex method (32). The final extracted volume was 200 µL. For all samples, nested amplification of the 18S rRNA gene region of plasmodia (*P. falciparum, P. vivax, P. malariae,* and *P. ovale*) was used for parasite detection and species identification. As positive controls for all amplifications, we used DNA from *P. falciparum* isolates 7G8 (MR4-MRA-926) and HB3 (MR4-MRA-155), *P. vivax* Pakchong (MR4-MRA-342G) and Nicaragua (MR4-MRA-340G), *P. malariae* (MR4-MRA-179), and *P. ovale* (MR4-MRA-180). As negative controls, we used water and noninfected samples to ensure lack of contamination. Reaction was performed in a Bio-Rad MyCycler thermal cycler according to the published protocol (33) (details in online Technical Appendix 1, https://wwwnc.cdc.gov/EID/article/23/4/16-1245-Techapp1.pdf).

In addition, the amount of parasite DNA was estimated by using the SYBR Green (Thermo Scientific, Foster City, CA, USA) qPCR detection method with *Plasmodium* species–specific primers that targeted the 18S rRNA genes (34,35). Reactions were performed in a CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Foster City, CA, USA). To confirm specific amplifications of the target sequence, we performed melting curve analyses for each amplified sample. To measure reproducibility of the cycle threshold (Ct), we calculated the mean value and standard deviations from triplicates in 2 independent assays. The parasite gene copy number in a sample was quantified according to Ct with the equation (30) GCN

\[
\text{GCN}_{\text{sample}} = e^{\Delta Ct \times e^{\text{GCN}_{\text{stand}}}}
\]

where GCN stands for gene copy number; ΔCt, the difference in Ct between the negative control and the sample; e, exponential function; and E, amplification efficiency (online Technical Appendix 1).

CSP Sequencing and Phylogenetic Analyses

Four internal primers were designed specifically on the *P. malariae* *csp* gene region and used together with the
published primers (28; online Technical Appendix 1 Table) to unambiguously amplify the 3 segments, the N terminal, the central repeat, and the C-terminal regions of the csp gene. A total of 37 P. malariae isolates were amplified and sequenced. All resulted sequences were verified by comparing them with those in the GenBank database by using BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Sequences were translated into protein sequences and analyzed together with all csp protein sequences available in GenBank of P. malariae from East Africa (Kenya and Uganda), West Africa (Cameroon), Central Africa (Côte d’Ivoire), and South America (Venezuela) and of P. brasilianum from South America (Brazil and Venezuela). It is noteworthy that although P. malariae and P. brasilianum coexist in Brazil, no csp sequence for P. malariae is available. Because of the potential for alignment errors associated with gaps in the nucleotide sequences, we used translated amino acid sequences with unambiguous indels in phylogenetic analyses. Sequence diversity, including measures of evolutionary distances and average pairwise divergence, were estimated and compared among geographic regions (online Technical Appendix 1).

Statistical Analyses
A 1-tailed t-test was used to test for the significance of differences in parasite gene copy number between P. malariae from symptomatic and asymptomatic patients and between P. malariae and P. falciparum in co-infected samples. In addition, we calculated the Pearson correlation coefficient (r^2) for parasite gene copy number and age by using R (https://www.r-project.org/).

Results

P. malariae Prevalence and Patient Age Distribution
Among the 663 samples from asymptomatic persons, P. malariae was detected by PCR in 35 (5.3% prevalence). Among these, 29 were mixed infections (with P. falciparum) and 6 were P. malariae monoinfections (Figure 1; Table 1). P. malariae was found to be most prevalent in Kombewa (14.3%, 19/133 cases), followed by Kendu Bay (5.3%, 8/150 cases). Prevalence of P. falciparum prevalence was relatively high at these 2 sites (44% and 59%, respectively; Table 1). In Kombewa, 13 of 19 P. malariae cases were detected in younger persons (<15 years of age), which was significantly higher than the number of cases detected in older persons (6 cases, p = 0.04; Table 1). Although such a comparison between age groups cannot be made for the other sites, a similar pattern was observed for symptomatic patients.

Among the 245 samples from symptomatic patients, 8 (3.3%) P. malariae cases were detected; 6 were mixed...
infections with *P. falciparum* and 2 were *P. malariae* mono-infections (Table 2). When the samples were stratified by patient age, all *P. malariae* infections in symptomatic persons were in infants or very young children of <5 years of age (8/135, 5.9% infection rate). Although *P. falciparum* infection was highest among patients >5 to ≤15 years of age, no *P. malariae* was detected in persons in this and older age groups despite smaller samples in these groups. No significant difference was detected between male and female patients.

Comparisons of Diagnostic Approaches and Parasitemia

Compared with microscopy, nested PCR revealed a significantly higher number of *P. malariae* infections in the community (Table 3). All samples that were *P. malariae* positive by microscopy were identified as positive by PCR and qPCR. Across the study sites, nested PCR–based prevalence ranged from 0 to 12.2% (average 4.8%), >2-fold higher than by microscopy (0 to 3.8%, average 1.9%; Table 3). The discrepancy between the 2 methods was also reflected by the difference in *P. falciparum* prevalence; 10% more positive infections were detected by nested PCR than by microscopy. Nevertheless, such a discrepancy was not as substantial as that for *P. malariae*.

Although the number of *P. malariae*–positive clinical samples detected in this study was low, these samples indicated an overlapping range of parasite gene copy number (geometric mean 6.4 × 10^3/µL, range 4.3 × 10^1 to 1.2 × 10^7/µL; Figure 2) with that of the samples from asymptomatic persons (geometric mean 4.8 × 10^1/µL, range 0.5 × 10^1 to 9.4 × 10^2/µL) without differing significantly (p>0.05). Similar results were observed in the level of *P. malariae* parasitemia, for which samples from symptomatic and asymptomatic persons did not differ significantly (Figure 2). Parasite gene copy number and *P. malariae* parasitemia were significantly positively correlated with each other (r^2 = 0.77, p<0.01; online Technical Appendix 1 Figure 1).

Parasite gene copy number and parasitemia for *P. falciparum* were generally higher than those for *P. malariae* (Figure 3, panel A). Among the 35 mixed infections, 28 (80%) gene copy numbers were higher for *P. malariae* than for *P. falciparum* (online Technical Appendix 1 Figure 2). Among these samples overall, the amount of *P. falciparum* infections
DNA (geometric mean 1.6 \times 102/µL, range 1 \times 101 to 5.5 \times 103/µL) was significantly higher than the amount of *P. malariae* DNA (geometric mean 4.7 \times 101/µL, range 0.4 \times 101 to 1.1 \times 103/µL; p = 0.003), consistent with the difference in parasitemia according to microscopy (*P. malariae* geometric mean 3.2 \times 102 parasites/µL vs. *P. falciparum* geometric mean 1.1 \times 103 parasites/µL; online Technical Appendix 1 Figure 2).

When all *P. malariae* samples were pooled, the parasite gene copy number did not correlate significantly with patient age ($r^2 = 0.07$; online Technical Appendix 1 Figure 3). Neither *P. malariae* prevalence rate nor parasite gene copy number differed significantly according to patient sex.

Genetic Relatedness and csp Divergence of *P. malariae*

The csp alignment comprised 530 aa, of which 34 (6.4%) were polymorphic among the studied parasites of different taxa (online Technical Appendix 2, https://wwwnc.cdc.gov/EID/article/23/4/16-1245-Techapp2.pdf). To avoid polymorphism caused by PCR error, we sequenced each isolate at least twice in both directions. Substantial length variation was observed in the central repeat region, where the number of NAAG (the repeat codon unit in which n denotes the number of repeats) in *P. malariae* ranged from 49 to 85 units. These tandem repeats could be rapidly evolving.
through a different mechanism and may influence genetic relationships among the samples. To examine such effect, we constructed phylogenetic trees with 2 sets of data: the entire sequence (530 aa) and partial sequences without the central repeat region (225 aa).

Maximum-likelihood analyses of the entire csp gene showed a clear distinction between isolates from South America and those from the other geographic regions (Figure 4, panel A). *P. brasilianum* and *P. malariae* from Venezuela formed a monophyletic group (bootstrap >95%) closely associated with *P. brasilianum* from Brazil. Sequences of *P. malariae* from Venezuela were almost identical to those of *P. brasilianum* from the same area. Closely related to the clade from South America was a large monophyletic group that contained *P. malariae* from East, Central, and West Africa and from China (bootstrap >90%). The isolates from these regions were divided into 2 subclades: I and II (Figure 4, panel A). Subclade I comprised a mix of *P. malariae* isolates from Kenya, Cameroon, and Côte d’Ivoire. Subclade II comprised a mix of *P. malariae* isolates from Kenya, Cameroon, Uganda, and China. Sequences without the central repeat region indicated consistently the distinctiveness between *P. brasilianum* from Brazil and *P. malariae*, but the *P. malariae* samples from different geographic regions were poorly resolved (Figure 4, panel B). The *P. malariae* isolate from China was nested within the African subclade, suggestive of an African origin (Figure 4, panel C). No clear microgeographic structure was detected, although sample size at the population level was small.

Among the 3 geographic regions, the level of csp sequence divergence in *P. malariae* was higher in isolates from East Africa than from West Africa, as reflected by a higher number of polymorphic sites and a greater extent of csp length variation despite difference in sample size (Figure 5, panels A and B). These variations were located at the 3’N terminal through the central repeat region, where the largest degree of mismatch was observed (Figure 5, panel B). To the contrary, the level of sequence polymorphism was lowest in isolates from South America (Figure 5, panel A), but the greatest range of difference in tandem repeat units where remarkable mismatch was observed was toward the end of the central region. Despite the small sample size, the number of tandem repeats was generally lower in *P. brasilianum* than *P. malariae* (Figure 5, panel C).

Discussion

In Kenya, areas along the shoreline of Lake Victoria and coastal regions are malaria hot spots, where intense and stable
plasmodia transmission occurs throughout the year (31). For achieving the ultimate goal of eliminating malaria in Kenya, existing control programs that primarily target *P. falciparum* are inadequate. The use of rapid diagnostic tests or microscopy as first-line diagnostic methods can lead to gross underestimation of the actual prevalence of *P. malariae* (4–6). Our findings indicated that *P. malariae* accounted for ≈3% of clinical cases and ≈5% of asymptomatic infections in this malaria-endemic region. The prevalence of asymptomatic *P. malariae* infections was comparable to that recently reported for nearby islands of Lake Victoria (1.7%–3.96%) on the basis of PCR (36,37). These asymptomatic *P. malariae* infections are concerning because they are parasite reservoirs that can sustain long-term transmission. For instance, in the Colombian Amazon region, *P. malariae* was thought to account for ≤1% of all malaria infections (38,39); however, a recent study revealed that 43.6% (294/675) of clinical cases were caused by *P. malariae* (10) and suggested that these parasites have been circulating in the community undetected. Underestimation or lack of awareness of its occurrence could thus lead to increased transmission. The infectiousness of *P. malariae* for Anopheles mosquitoes in malaria-endemic areas remains unclear and merits further investigation.

We found that *P. malariae* infections were more common among infants and children than adults. A similar pattern has been found for Senegal, West Africa, where 91% (265/290 cases) of clinical *P. malariae* cases occurred in children <15 years of age and the mean incidence density was highest for those 5–9 years of age (3). These findings indicate that children are vulnerable to *P. malariae* infection and contrast with those reported for Papua, Indonesia, where *P. malariae* infection was higher among older (median 21 years of age) than younger persons (9). It is possible that our study sites in western Kenya, as well as in West Africa, are high-transmission areas where *P. falciparum* malaria prevalence can be ≈60% during the rainy season (30,40). Cumulative exposure to the parasites over time may enable gradual acquisition of immunity in adults. Nevertheless, our community samples were mostly obtained from schoolchildren 6–15 years of age. Underrepresentation of adult populations may underestimate the overall malaria prevalence in the study area. Although young children are more vulnerable to *P. malariae* infections, the level of *P. malariae* parasitemia does not seem to be associated with age. Chronic nephrotic syndromes attributed to *P. malariae* have been reported (41,42) and shown to be associated with significant illness from anemia in young children (8,9). However, the lack of hematologic data from our study participants limits further investigation.

Our data indicate that ≈50% of *P. malariae*-positive samples detected by PCR were undetected by microscopy. Such a low sensitivity of microscopy could be attributed to a significantly lower *P. malariae* than *P. falciparum* parasitemia, according to qPCRs. Because most *P. malariae*-positive samples had mixed infections, microscopists could have recorded only the dominant *P. falciparum* and overlooked the sparse *P. malariae* trophozoites. Also, the ring forms of *P. falciparum* and *P. malariae* are morphologically more similar to each other than to *P. vivax* and *P. ovale* (43). Misdiagnosis of parasite species by microscopy is possible (8).

Figure 5. Comparison of circumsporozoite protein (csp) gene sequence divergence among *Plasmodium* isolates from different geographic regions. A) Pairwise genetic distance plot of all amino acid positions of the csp gene. The matrix-normalized distances based on the standard point accepted mutation (Dayhoff–PAM) model that account for the probability of change from 1 amino acid to another were calculated. Samples were analyzed as a whole and partitioned by geographic regions as indicated by colors. B) Dot plot showing matching scores, a proxy of sequence similarity, between pairwise samples calculated based on the standard Dayhoff–PAM matrix. The greatest mismatch was detected at amino acid positions 110–310, representing the 3' N terminal through the central repeat regions. C) Variation in the number of tandem repeats in the central region of the csp gene. The greatest length variation was observed in the isolates from South America despite the fact that both *P. malariae* (PM) and *P. brasilianum* (PB) were included. *P. malariae* from East Africa was more variable in the number of repeats than isolates from Central/West Africa, despite difference in sample size. Median, first quartile, and fourth quartile of the data are shown for each sample category (horizontal lines). Red represents samples from South America; yellow, Central/West Africa; blue, East Africa. Circles represent *P. brasilianum*; squares, *P. malariae*.
In Africa, the standard treatment for *P. malariae* monoinfection is chloroquine, and for *P. falciparum* and mixed plasmodial infections it is artemisinin combination therapy (31). The combination treatment regime should cure *P. malariae* infections even in cases of misdiagnosis. However, *P. malariae* increases production of *P. falciparum* gametocytes in mixed infections, and these gametocytes can persist without proper antimalarial treatment or monitoring (44). Therefore, we highlight the need for sensitive methods to improve *P. malariae* diagnosis and provide accurate epidemiologic data for specific and effective management guidelines. Although PCR is a better diagnostic method, it uses a relatively small amount of blood from filter papers and could still underestimate *P. malariae* infections in samples with exceptionally low levels of parasitemia. More accurate prevalence data may be obtained from ultrasensitive PCR that targets multicopy regions of the parasite genome (45) or reverse transcription PCR of parasite RNA extracted from whole blood (46).

Sequences of the csp gene were shown to be highly polymorphic among *P. malariae* isolates from western Kenya. The most polymorphic region was in the central repeat region, where mutations and length differences were detected (24,28). Among the isolates from different geographic areas, *P. malariae* from East and Central/West Africa were genetically closely related and exhibited a comparable level of sequence variation. This variation could be attributed to positive selection, frequent recombination, and gene flow among the parasites, as follows. First, compared with msp1, dhfr, and dhps of *P. malariae* (20–22), the csp gene revealed a remarkably higher level of sequence diversity. It is possible that selection of csp genetic variants may confer immunogenic advantages to the pathogen during host invasion (28,47). Second, intense transmission and large vector populations in our study area might enhance frequent heterologous recombination of the parasite genome during reproduction in the mosquitoes and increase genetic diversity within populations (24,25). Third, recurrent gene flow between the parasite populations across countries, via human migration or dispersal of vector mosquitoes, promotes the spread of these genetic variants, leading to a lack of differentiation according to geographic region. Future study using other variable markers, such as microsatellites, on expanded population samples could validate our findings.

In summary, underestimation of the actual prevalence of asymptomatic infections hinders progress toward malaria elimination in Africa. The low parasitemia of *P. malariae* infections influences diagnostic sensitivity by microscopy. A more sensitive tool is needed to identify asymptomatic *P. malariae* and to improve control strategies, particularly among infants and children who are vulnerable to *P. malariae* infection.

Acknowledgments
We are greatly indebted to technicians and staff from the Kenya Medical Research Institute for sample collection, undergraduate students for assisting with data collection, and Ming-Chieh Lee for producing the map of the study area.

This research was supported by US National Institutes of Health grants R01 AI050243 and D43 TW001505 to G.Y.

Dr. Lo is a researcher focused on molecular epidemiology and evolution of pathogens. She is interested in exploring the effects of host–parasite interactions on parasite genomic and genetic structure.

References
Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 23, No.4, April 2017
609

Address for correspondence: Eugenia Lo and Guiyun Yan, Program in Public Health, Rm 3501B, Hewitt Hall, Health Science Dr, University of California Irvine, Irvine, CA 92617, USA; email: eugenia.lo@uci.edu and guiyuny@uci.edu

May 2015: Vectorborne Infections

- Detecting Spread of Avian Influenza A(H7N9) Virus Beyond China
- Recent US Case of Variant Creutzfeldt-Jakob Disease—Global Implications
- Novel Thogotovirus Associated with Febrile Illness and Death, United States, 2014
- Isolation of *Onchocerca lupi* in Dogs and Black Flies, California, USA
- Molecular Epidemiology of *Plasmodium falciparum* Malaria Outbreak, Tumbes, Peru, 2010–2012
- Delayed-Onset Hemolytic Anemia in Patients with Travel-Associated Severe Malaria Treated with Artesunate, France, 2011–2013
- Protective Antibodies against Placental Malaria and Poor Outcomes during Pregnancy, Benin
- Comparative Sequence Analyses of La Crosse Virus Strain Isolated from Patient with Fatal Encephalitis, Tennessee, USA
- Low-level Circulation of Enterovirus D68–Associated Acute Respiratory Infections, Germany, 2014
- Canine Distemper in Endangered Ethiopian Wolves
- Getah Virus Infection among Racehorses, Japan, 2014
- Transmission Potential of Influenza A(H7N9) Virus, China, 2013–2014
- Rapid Emergence of Highly Pathogenic Avian Influenza Subtypes from a Subtype H5N1 Hemagglutinin Variant
- Antimicrobial Drug Resistance of *Vibrio cholerae*, Democratic Republic of the Congo
- Postmortem Stability of Ebola Virus Influenza A(H5N8) Virus Similar to Strain in Korea Causing Highly Pathogenic Avian Influenza in Germany
- Canine Infections with *Onchocerca lupi* nematodes, United States, 2011–2014
- Full-Genome Sequence of Influenza A(H5N8) Virus in Poultry Linked to Sequences of Strains from Asia, the Netherlands, 2014
- Transmission of Hepatitis C Virus among Prisoners, Australia, 2005–2012
- Pathologic Changes in Wild Birds Infected with Highly Pathogenic Avian Influenza (H5N8) Viruses, South Korea, 2014
- Itaya virus, a Novel Orthobunyavirus Associated with Human Febrile Illness, Peru
- Characterization of *Shigella sonnei* Isolate Carrying Shiga Toxin 2–Producing Gene
- Outbreak of *Leishmania braziliensis* Cutaneous Leishmaniasis, Saül, French Guiana
- Ciprofloxacin-Resistant *Shigella sonnei* Associated with Travel to India

http://wwwnc.cdc.gov/eid/articles/issue/21/5/table-of-contents

Technical Appendix 1

Detailed description of PCR-based diagnostic assays and phylogenetic analyses of csp sequences

Microscopy

Slides were examined under microscopes 100× objective. Parasites were counted against 200 leukocytes. A slide was considered negative when no parasites were observed after counting over 100 microscopic fields. All slides were read in duplicate by two microscopists at the time of sample collection. In the case of discordance, the slides were examined by a third microscopist. The density of parasitemia was expressed as the number of asexual parasite per microliter of blood, assuming a leukocyte count of 8000 cells per microliter according to the WHO guidelines.

Nested PCR assay of Plasmodium species

Parasite DNA was extracted from half of a 50ul-dried blood spot by the Saponin/Chelex method (1). The final extracted volume was 200μl. A nested amplification of the 18S rRNA gene region of Plasmodium (P. falciparum, P. vivax, P. malariae and P. ovale) was used for parasite detection and species identification in all samples. DNA from P. falciparum isolates 7G8 (MR4-MRA-926) and HB3 (MR4-MRA-155), P. vivax Pakchong (MR4-MRA-342G) and Nicaragua (MR4-MRA-340G), P. malariae (MR4-MRA-179), as well as P. ovale (MR4-MRA-180) were used as positive controls in all amplifications. Water and uninfected samples were used as negative controls to ensure lack of contamination. Amplification was conducted in a 20ul reaction mixture containing 2ul of genomic DNA, 10ul of 2×DreamTaq™ Green PCR Master Mix (Fermentas), and 0.3uM primers. Reaction was performed in a BIORAD MyCycler thermal cycler following the published protocol (2). The amplified products were resolved electrophoretically on a 2% agarose gel in 0.5×Tris-borate (TBE) buffer and visualized under UV light.
Quantitative real-time PCR assay of Plasmodium species

Parasite DNA amount was estimated using the SYBR Green qPCR detection method with *Plasmodium* species-specific primers that targeted the 18S rRNA genes (3–5). Amplification was conducted in a 20µL reaction mixture containing 2µL of genomic DNA, 10µL 2×SYBR Green qPCR Master Mix (Thermo Scientific, USA), and 0.5µM primer. Reaction was performed in CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad), with an initial denaturation at 95°C for 3 min, followed by 45 cycles at 94°C for 30 sec, 55°C for 30 sec, and 68°C for 1 min with a final 95°C for 10 sec. This was then followed by a melting curve step of temperature that ranged from 65°C to 95°C with 0.5°C increment to determine the melting temperature of each amplified product. Melting curve analyses were performed for each amplified sample to confirm specific amplifications of the target sequence. For the measure of reproducibility of the threshold cycle number (*Ct*), the mean value and standard deviations were calculated from triplicates in two independent assays. A cut-off threshold of 0.02 fluorescence units that robustly represented the threshold cycle at the log-linear phase of the amplification and above the background noise was set to determine *Ct* value for each assay. Samples yielding *Ct* values higher than 40 (as indicated in the negative controls) were considered negative for *Plasmodium* species. The parasite gene copy number (GCN) in a sample was quantified based on the threshold cycle using the follow equation (6): \[\text{GCN}_{\text{sample}} = e^{[E \times \Delta Ct_{\text{sample}}]} \], where GCN stands for gene copy number, \(\Delta Ct \) for the difference in threshold cycle between the negative control and the sample, and E for amplification efficiency. The amplification efficiency of primers was assessed on 10-fold serial dilutions ranging from 10⁵ to 10¹ copies/µl of the control plasmids. DNA from *P. falciparum* isolates 7G8 (MR4-MRA-926) and HB3 (MR4-MRA-155), and *P. malariae* (MR4-MRA-179) isolate were used as positive controls. Water and uninfected samples were used as negative controls in all amplifications.

CSP sequencing and phylogenetic analyses

Four internal primers were designed specifically on the *P. malariae csp* gene region and used together with the published primers (7) (Technical Appendix Table) to unambiguously amplify the three segments, the N-terminal, the central repeat, and the C-terminal regions of the *csp* gene. A total of 37 *P. malariae* isolates were amplified and sequenced. Amplification was conducted in a 20µL reaction mixture containing 2µL of genomic DNA, 10µL 2××DreamTaq™ Green PCR Master Mix (Fermentas) and 0.5µL of 10 µM primers. PCR cycles included an initial
denaturing step at 95°C for 3 min, 40 cycles of 95°C for 30 sec, 48-50°C for 30 sec, and 72°C for 2 min, followed by an additional extension at 72°C for 5 min in a Bio-Rad MyCycler Thermal Cycler. PCR products were visualized on 1% agarose gel and then purified and sequenced from both ends with BigDye Terminator v3.1 Cycle Sequencing Kit on an ABI 3130xl sequencer.

All obtained sequences were blasted against NCBI GenBank database for verification. They were translated into protein sequences and analyzed together with all available csp protein sequences of P. malariae as well as P. brasilianum retrieved from the GenBank database. Due to potential alignment errors associated with gaps in the nucleotide sequences, translated amino acid sequences with unambiguous indels were used in phylogenetic analyses. Sequences were aligned with MUSCLE v3.7 (8) using default settings followed by manual editing in Sequence Alignment Editor v1.1.d1 (9). A phylogenetic tree was reconstructed using the maximum likelihood method implemented in the PhyML program v3.0 (10). The WAG (Whelan And Goldman) substitution model, which assumes an estimated proportion of invariant sites and four gamma-distributed rate categories to account for rate heterogeneity across sites, was selected. Resulted trees were visualized in FigTree v1.4.2.

Sequence diversity including measures of evolutionary distances and average pairwise divergence were estimated using SSE v1.2 (11). The matrix-normalized distances based on the standard PAM model (12) that accounts for the probability of change from one amino acid to another were calculated. In addition, a similarity scan was performed between and within sequences using the standard PAM-Dayhoff matrix to normalize a matching score. Regions that meet or exceed the set criteria of the number of matches were plotted on a dot plot graph. Plasmodium malariae of East Africa (Kenya and Uganda), Central/West Africa (Cameroon and Cote d’Ivoire), and South America (Brazil and Venezuela) were compared for level of sequence diversity among gene regions.

References

Technical Appendix Table

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence</th>
<th>Expected size (bp)</th>
<th>Annealing temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>csp-F*</td>
<td>ATGAAGAAGTTATCTGCTTAGCAATATCC</td>
<td>280</td>
<td>50°C</td>
</tr>
<tr>
<td>csp-280R</td>
<td>CCGGGGGTTGGTTTCAATTTATTTTC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>csp-280F</td>
<td>GGTGTGAAAAATAATGAACAACC</td>
<td>700-800</td>
<td>48°C</td>
</tr>
<tr>
<td>csp-1070R</td>
<td>CCACCTTATTATCCTTTTTCGC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>csp-1070F</td>
<td>GCGAAAAATAAGGATAAAAGTGGA</td>
<td>400</td>
<td>50°C</td>
</tr>
<tr>
<td>csp-R*</td>
<td>TTAGTGAAAGAGTATTAAGACTAAAC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Primer published in (7).

Technical Appendix Figure 1

Scatter plot showing the significant correlation of parasite gene copy number measured by quantitative real-time PCR and parasitemia by microscopy of *Plasmodium malariae* isolates.

$r^2 = 0.77$

$P = 0.001$
Technical Appendix Figure 2. Scatter plots showing (A) parasite gene copy number of *P. malariae* and *P. falciparum* ranked from low to high *P. malariae* parasite gene copy number and (B) parasitemia of *P. malariae* and *P. falciparum* ranked from low to high *P. malariae* parasitemia of co-infected samples.
Technical Appendix Figure 3. Scatter plot showing the non-significant correlation of *P. malariae* gene copy number against age among samples.