cephalosporinases, usually only AmpC (9). Nevertheless, we hypothesize that E. cloacae complex contains genotypes with epidemic potential associated with increasing rates of carbapenem resistance observed in the VHA.

The scope of this study did not include molecular characterization, so we could not determine emerging genotypes or detect outbreaks at individual facilities. Also, non-uniform susceptibility testing and interpretation throughout the VHA may affect reporting of CRE. Although criteria for interpretation of carbapenem susceptibility changed during the past decade, the revised breakpoints do not appear to have a major effect on resistance rates in Klebsiella and Enterobacter spp., according to other surveillance data (10). Despite these limitations, the VHA may serve as a vantage point for detecting nationwide trends in antimicrobial drug resistance. Integration of susceptibility testing with molecular characterization at the VHA may help elucidate the changing epidemiology of CRE in the United States.

This work was approved by the Institutional Review Board at the Louis Stokes Cleveland Department of Veterans Affairs Medical Center.

This work was supported in part by the National Institutes of Health through the Clinical and Translational Science Collaborative of Cleveland (UL1TR000439), National Institute for Allergy and Infectious Disease (R01AI100560, R01AI063517, R21AI114508, and R01AI072219), and VA Research and Development Office (BX001974) and by the VISN 10 Geriatrics Research, Education and Clinical Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the Department of Veterans Affairs.

Dr. Wilson is a researcher at the Louis Stokes Cleveland Department of Veterans Affairs Medical Center in Cleveland, Ohio, USA. Her main research interest is the use of healthcare databases to study infectious diseases in the elderly.

References

Address for correspondence: Federico Perez or Robert A. Bonomo, Louis Stokes Cleveland Department of Veterans Affairs Medical Center; 10701 East Blvd, Cleveland, OH 44106, USA; email: federico.perez@va.gov or robert.bonomo@va.gov

Vertical Transmission of Zika Virus by Aedes aegypti and Ae. albopictus Mosquitoes

Alexander T. Ciota, Sean M. Bialosuknia, Dylan J. Ehrbar, Laura D. Kramer

Author affiliations: Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (A.T. Ciota, S.M. Bialosuknia, D.J. Ehrbar, L.D. Kramer); State University of New York, School of Public Health, Albany, New York, USA (A.T. Ciota, L.D. Kramer)

DOI: http://dx.doi.org/10.3201/eid2305.162041

To determine the potential role of vertical transmission in Zika virus expansion, we evaluated larval pools of perorally infected Aedes aegypti and Ae. albopictus adult female mosquitoes; ≥1/84 larvae tested were Zika virus–positive; and rates varied among mosquito populations. Thus, vertical transmission may play a role in Zika virus spread and maintenance.
Following the 2007 outbreak in Micronesia, Zika virus (Flaviviridae, Flavivirus) has continued to expand its distribution throughout the Pacific region and, since 2014, the Americas (1,2). The virus is primarily maintained by horizontal transmission between *Aedes aegypti* mosquitoes and humans, yet other *Aedes* spp. are also competent vectors (3). The extent to which Zika virus can utilize vertical transmission between mosquitoes (i.e., transmission from an infected adult female mosquito to her progeny) has not been adequately assessed after peroral infection. Such studies are required to accurately determine the potential role of vertical transmission in Zika virus expansion and maintenance.

Although previous studies have found that other flaviviruses, including West Nile (4), dengue (5), yellow fever (6), and St. Louis encephalitis (7), can undergo vertical transmission, such transmission is generally relatively inefficient, with filial infection rate (FIR) estimates ranging from 1/36 to 1/6,400 (8). A previous study estimated rates for Zika virus vertical transmission in *Ae. aegypti* mosquitoes to be 1/290, yet a reliable estimate for transmission in *Ae. albopictus* mosquitoes was not achieved (8). In addition, these estimates were based on intrathoracic inoculation of Zika virus rather than on assessment after infectious blood meal acquisition.

We exposed laboratory colonies of *Ae. aegypti* mosquitoes (collected in Posadas, Argentina, or Poza Rica, Mexico) and *Ae. albopictus* mosquitoes (obtained from Suffolk County, New York) to Zika virus through infectious blood meals and evaluated the mosquitoes’ capacity to transmit the virus to progeny. For this study, we used the Zika virus strain ZIKV HND (Honduras 2016, GenBank accession no. KX906952), passaged once on C6/36 cells, and Zika virus PR (Puerto Rico 2015, GenBank accession no. KX087101.3), passaged 4 times on Vero cells and twice on C6/36 cells. Zika virus was propagated on C6/36 cells for 4 days, and freshly harvested supernatant was mixed 1:1 with sheep blood (Colorado Serum Company, Denver, CO, USA) and 2.5% sucrose.

Infectious blood meals were offered to 4- to 7-day-old female mosquitoes, and weekly noninfectious blood meals were offered after the first oviposition. Eggs laid during the second oviposition and beyond were collected and hatched for subsequent testing. Third- to fourth-instar larvae were collected in pools of 5 and processed by homogenization and centrifugation. After RNA extraction, we used Zika virus–specific quantitative reverse transcription PCR (9) to determine adult infection (indicated by positive bodies), dissemination (indicated by positive legs), viral load, and

| Table. Vertical transmission of Zika virus in *Aedes* spp. mosquitoes* |
|-----------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Species/population | Zika virus strain | Blood meal titer, log10 PFU/mL | % Infected (diss)† | Mean body titer, log10 PFU/mL | Total no. pools | No. individual mosquitoes dpi | No. Zika virus positive | FIR‡ (95% CI) |
| *Ae. aegypti* | | | | | | | | |
| Mexico | ZIKV HND | All§ | 8.9 | 90.9 (95.0) | 7.6 | 26 | 130 | 11–18 | 1.0 | 7.7 | (0.5–36.9) |
| Argentina | ZIKV HND | All§ | 9.3 | 100 (100) | 6.6 | 28 | 136 | 11–38 | 2.0 | 14.9 | (2.7–8.3) |
| Combined† | ZIKV HND | OV2 | | | 29 | 141 | 11–22 | 1 | 1.7 | 7.1 | (0.4–4.0) |
| | | OV3 | | | 23 | 115 | 18–38 | 2 | 1.7 | 3.2–57.2 |
| | | OV4 | | | 2 | 10 | 38 | 0 | <49.6 | <6.6–495.8 |
| Combined‡ | ZIKV HND | All§ | 9.1 | 95.5 (97.5) | 7.4 | 54 | 266 | 11–38 | 3 | 11.5 | (3.0–30.8) |
| Argentina | ZIKV PR | OV1 | | | 24 | 120 | 36–38 | 2 | 17.0 | (3.1–54.8) |
| | | OV2 | | | 15 | 75 | 43–52 | 0 | <13.3 | <0.8–63.6 |
| | | OV3 | | | 4 | 18 | 60–62 | 0 | <55.8 | <3.4–262.5 |
| | | OV4 | | | 7 | 35 | 63 | 1 | 28.5 | (1.7–34.8) |
| | ZIKV PR | All§ | 9.1 | 100 (100) | 7.7 | 50 | 248 | 36–63 | 3 | 12.3 | (3.3–33) |
| Combined | Combined** | All§ | 9.1 | 96.9 (98.3) | 7.5 | 104 | 514 | 11–63 | 6 | 11.9 | (4.9–46.0) |
| *Ae. albopictus* | | | | | | | | | | |
| New York | ZIKV HND | All§ | 8.9 | 100 (93.3) | 7.1 | 17 | 85 | 11–63 | 1 | 11.8 | (0.7–56.2) |

* Diss, disseminated; dpi, days post infection; FIR, filial infection rate; ZIKV HND, Zika virus Honduras 2016; OV, oviposition; ZIKV PR, Zika virus Puerto Rico.
† Percentage of infected with Zika virus–positive legs.
‡ No. Zika virus positive/1,000 larvae.
§ Combines data from all hatched eggs.
¶ Data for both mosquito populations are combined.
Acknowledgments

We thank the members of the Wadsworth Center Arbovirus Laboratory insectary staff for assistance with this project and the Wadsworth Center tissue and media facility for supplying cells and media for these studies. We are also grateful to V. Micieli, Centro de Estudios de Parasitología y Vectores, for supplying Ae. aegypti mosquitoes collected in Posadas, Argentina; to G. Ebel, Colorado State University, for Ae. aegypti mosquitoes collected in Poza Rica, Mexico; and to I. Rochlin, Suffolk County Health Department, for Ae. albopictus mosquitoes obtained from Suffolk County, New York.

The construction of the Wadsworth Center Arbovirus Laboratory insectary facilities was partially funded by the National Institutes of Health (NIH) grant C06-RR-17715.

Dr. Ciota is deputy director of the Arbovirus Laboratory, Wadsworth Center, New York State Department of Health. His primary research interests are arbovirus evolution and vector–virus interactions.

References

Address for correspondence: Alexander T. Ciota, Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Rd, Slingerlands, NY 12159, USA; email: alexander.ciota@health.ny.gov