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Genomic Analysis of Salmonella enterica

Serovar Typhimurium DT160 Associated

with a 14-Year Outbreak, New Zealand,
1998-2012

Technical Appendix

Sample Collection

From 1998-2012, Salmonella enterica serovar Typhimurium DT160 was isolated from
humans and numerous animal and environmental sources in New Zealand. In this study, 35
human, 25 wild bird, 25 poultry and 24 bovine DT160 isolates were randomly selected from
those isolates reported to the culture collection center at the Institute of Environmental Science
and Research (ESR). The number of isolates reported in these host groups displayed similar
epidemic curves, with an increase in prevalence from 1999-2000, before peaking in 2001 and

slowly decreasing in prevalence from 2002-2012. (Technical Appendix Figure 1).

SNP Comparison

SNPs (single nucleotide polymorphisms) are single base pairs that differ between
isolates. Two software programs were used to identify SNPs shared by the 109 DT160 isolates:
Snippy (https://github.com/tseeman/snippy) and kSNP3 (1). Snippy was used to align reads from
each isolate to a reference genome, in this case S. enterica serovar Typhimurium strain 14028s
(NC_016856), and then to compare the alignment results and identify single base pairs that were
found in all isolates but differed in sequence (core SNPs). kSNP was used to identify kmers of a
fixed length that differed in one nucleotide between de novo-assembled genomes and
NC_016856. kSNP identified 731 SNPs shared by the 109 DT160 isolates, while Snippy
identified 771 SNPs (Technical Appendix Figure 2). 709 SNPs were identified by both methods,
leaving 22 kSNP-unique and 62 Snippy-unique SNPs. The kSNP-unique SNPs mostly consisted

of SNPs found on reads that did not align to the reference genome, while the Snippy-unique
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SNPs mostly consisted of SNPs that were in close vicinity, unable to be picked up by kSNP as
kmers of a fixed length would differ in more than one nucleotide. By using both methods a larger

number of SNPs were identified than if a single method alone was used.

773 out of the 793 core SNPs shared by the 109 DT160 isolates were also located on the
reference genome, NC_016856. The order of these SNPs on the reference genome identified
several small clades associated with close clusters of SNPs (Technical Appendix Figure 3).
However, most of the SNPs in these clusters were synonymous and unlikely to result from
selection pressures. The order of these SNPs also identified the non-synonymous SNPs
responsible for the formation of two distinct DT160 clades and the proteins they were located
within: glycogen debranching enzyme (A), 2-dehydro-3-deoxyphosphooctonate aldolase (B), a
YggT family protein (C), galactose-1-epimerase (D), uvrABC system protein B (E) and acrylyl-
coA reductase (F). Many of these proteins are involved in carbohydrate metabolism, suggesting

that the two DT160 clades may have distinct carbohydrate metabolism phenotypes.

Global DT160 Strains

Petrovska et al. (2) previously published the genomes of two DT160 isolates:
ERS015626 that was isolated from a horse in 1998 and ERS015627 that was isolated from a bird
in 1997. The raw reads from these isolates were downloaded from the European Nucleotide
Archive (http://www.ebi.ac.uk/ena) and assembled de novo. KSNP and Snippy identified 1,521
core SNPs in total shared by these two isolates and the 109 New Zealand DT160 isolates
analyzed. The average pairwise SNP distance between the two UK DT160 isolates and the New
Zealand isolates was 0.0287, compared to an average pairwise distance between NZ isolates of
0.0151

The two DT160 isolates from the United Kingdom were genetically distinct from each
other and from the 109 New Zealand DT160 isolates (Technical Appendix Figure 4). To our
knowledge these were the only DT160 isolates published to date.

Protein Coding Gene Analysis

The 109 DT160 isolates shared 684 protein differences. Primer-E v6 (3) was used to

predict the Euclidian distance matrix based on the presence of these protein differences.
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Of the 684 proteins that differed in sequence, 546 (93%) contained a single protein
difference (SNP, indel or presence), 53 (7%) contained two protein differences, and 5 (<1%)

contained more than two (Technical Appendix Figure 5).

Two isolates were excluded from protein analyses as they lacked a large number of genes
and were skewing the multi-dimensional scaling, functional plots and PermDisp calculations
(Technical Appendix Figure 6). These outliers shared similar epidemiologic information:
collected from human sources from 2004-2006. However, they were missing different sets of

genes.

Multidimensional scaling helps visualize the amount of similarity or dissimilarity
between data points. In multi-dimensional scaling, the centroid is the central point for a group of
data points. PERMANOVA found that the centroids were indistinguishable between isolates
collected from different sources or time periods (Table), as these isolates appeared to radiate out

from a point source (Technical Appendix Figure 7).

The distance from the centroid to each isolate (z-value) is a measure of dispersion and
equivalent to the accumulation of protein differences. The z-values were calculated using
PermDisp (4) and were modeled using a regression model. The residuals for this model lacked
normality (Technical Appendix Figure 8). To normalize the residuals, the z-values could have
been transformed. However, with such a low p-value for the date of collection, this would not

have changed the conclusions and would have made interpretation more difficult.

The 684 protein differences shared by the DT160 isolates were associated with a large
number of functions. For each COG functional group, the proportion of proteins that differed in
sequence was calculated (Technical Appendix Figure 9). Fisher exact test provided evidence that
these proportions differed (p = 0.0002). However, there was little variation in the proportions

(range: 0.07-0.17) and there were no outliers.

The mean proportion of proteins that differ in sequence for each functional group within
each time period and source was calculated by dividing the proportion of proteins that differed in
sequence among each source and time period in each functional group by the number of samples
in each group (Technical Appendix Figures 10). Year of collection and source seemed to have a
significant effect on the mean proportion of proteins that differ in sequence within each

functional group: the proportion within each functional group tended to increase over time, and
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certain functional groups (e.g., Extracellular structures (COG group W), Cell cycle control, cell
division and chromosome partitioning (COG group D), Signal transduction mechanisms (COG
group T), Lipid transport and metabolism (COG group 1), and Cell motility (COG group N)) had
higher proportions in the bovine and human host groups compared to the poultry and wild bird.
However, the total number of protein differences within each functional group was smaller than
the total number of samples (Technical Appendix Figure 11). Therefore, a regression model
could not be used to model the effect of source and date of collection on the number of

differences in each functional group, as a large number of isolates would have the same z-value.

Discrete Phylogeographic Model

The discrete phylogeographic model was designed to use phenotypic or molecular data to
predict the ancestral migration of organisms from distinct geographies (5). However, the model
has been applied to outbreaks to predict transmission between distinct host groups that share the
same geography (6). Twenty-two datasets were formed from the 109 DT160 isolates and the 793
core SNPs they share, to determine if the discrete phylogeographic model was appropriate for
investigating this outbreak. The real dataset consisted of the 109 isolates split into those from
animal sources (n = 74) and those from human sources (n = 35) (real dataset). Ten datasets were
formed by randomly assigning the 109 isolates as animal or human, while keeping the total
number of animal and human isolates the same (datasets A-J). Eleven datasets were formed by
randomly assigning one of the isolates as human, while assigning the rest as animal, before
progressively assigning random isolates as human, until a range of data was formed with
different numbers of human and animal isolates. Each dataset was exported into BEAULi to
create an .xml file for BEAST 1.8.3 (7). For simplicity’s sake, each dataset was given a separate
Hasegawa Kishino Yano (HYK) substitution model (8) and strict molecular clock. The GMRF
Bayesian skyride model (9) was used to allow for variation in the effective population size of
each model and the discrete phylogeographic model (5) was used to predict the time spent in the
animal and human host groups (Markov rewards) over the course of the outbreak, and the
number of transmission between these host groups (Markov jumps). Each .xml file was run in
BEAST for 10 million steps.
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The discrete phylogeographic model predicted that DT160 spend most of the time in the
animal host group, and that there was a larger amount of transmission from the animal to the
human host group than the reciprocal. However, the same result was obtained when the isolates
were randomly assigned as human or animal, but the sample proportions were kept the same
(Technical Appendix Figures 12 and 13). In addition, the proportion of samples assigned as
human had a significant effect on the Markov rewards and jumps (Technical Appendix Figures
14 and 15). This indicates that the results obtained from the discrete phylogeographic model are

the result of an uneven sample size and not true migration events.

The proportion of samples that are human and Markov rewards share a step-like or
sigmoid association (Technical Appendix Figure 14). This is due to the deep DT160 branches
that are predominantly one source until the proportion of samples that are human meets a
threshold (30%—-40% of samples are human), where they suddenly all switch (Technical
Appendix Figure 16). However, the relationship between the proportion of samples that are
human and Markov jumps is more complex (Technical Appendix Figure 15). As the proportion
of samples that are human increases, the number of human branches increases, but the ancestral
branches remain animal, resulting in an increase in the number of animal-to-human Markov
jumps. There are no human-to-animal Markov jumps up until the threshold, as there are no
ancestral branches that are human. However, after the human proportion threshold is meet, the
ancestral branches switch to human, resulting in no animal-to-human Markov jumps and a large
number of human-to-animal Markov jumps that decrease as the human sample proportion
increases and the number of animal tips decrease. If there were no deep branches or coalescent
events, we would expect the correlation between the human proportion and Markov rewards to
be more linear. In addition, we would expect there to be a positive linear relationship between
the human proportion and the number of each Markov jump up to the threshold and a negative

linear relationship afterwards.
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Technical Appendix Table. PERMANOVA (http://www.primer-e.com/permanova.htm) output for 107 Salmonella enterica serovar
Typhimurium DT160 isolates, based on the presence of 684 protein differences and grouped by year of collection and source*

Coefficient Df SS MSS Pseudo-F P(perm) Unique perms
Year 4 42.26 10.57 1.143 0.121 998
Source 3 26.9 8.968 0.97 0.515 997
Year xSourcet 10 99.9 9.99 1.081 0.187 996
Residuals 89 822.8 9.245

Total 106 1,002

*Df, degrees of freedom; SS, sum of squares; MSS, mean sum of squares; Pseudo-F, F-value from the data; P(perm), proportion of permuted
datasets whose F-value exceeds Pseudo-F; Unique perms, number of unique permutations.
TCoefficient interaction.
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Technical Appendix Figure 1. Line graph of the number of bovine (A: orange), human (B: blue), poultry
(C: purple) and wild bird (D: green) DT160 cases reported in New Zealand from 1998-2012 (10-12).
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Technical Appendix Figure 2. Venn diagram of the number of unique and shared DT160 SNPs
identified by Snippy and kSNP3.
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Technical Appendix Figure 3. Maximum likelihood tree of 109 DT160 isolates (based on 793 core
SNPs). The scale bar represents the number of nucleotide substitutions per site. The colored squares
represent the sources of the isolates. The presence-absence matrix represents the presence of the 773
core SNPs located on the reference genome, NC_016856. The SNPs were arranged in the order they
appear on the reference genome. Black bars represent non-synonymous SNPs and gray bars represent
synonymous SNPs. The non-synonymous SNPs responsible for the formation of the major DT160 clades

were assigned a letter (A-F) and the proteins they are located within are outlined.
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Technical Appendix Figure 4. Histogram of the number of protein differences found within the same

protein sequence.
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New Zealand isolates

ESR015627

Technical Appendix Figure 5. NeighborNet tree of 111 DT160 isolates (based on 1,521 core SNPs):
109 from New Zealand and two from the United Kingdom (ERS015626 and ERS015627). The scale bar

represents the number of nucleotide substitutions per site.
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Technical Appendix Figure 6. Multi-dimensional scaling of 109 (A) and 107 (minus two outliers) (B)
DT160 isolates based on the presence of 684 protein differences.
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Technical Appendix Figure 7. Multi-dimensional scaling of 107 DT160 isolates, based on the presence
of 684 protein differences and colored by date of collection (A) and source (B).
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COG functional group.
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Technical Appendix Figure 10. Bar graph of the mean proportion of proteins that differ in sequence for

each COG functional group within each time period (A) and source (B).
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Technical Appendix Figure 11. Bar graph of the number of protein difference for each functional group

shared by 107 DT160 isolates.
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Technical Appendix Figure 12. Scatter plot of the number of animal (red) and human (blue) Markov
rewards estimated for the real and ten randomly assigned (A-J) datasets. The circles represent the mean

Markov reward value and the error bars represent the 95% HPD interval.
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Technical Appendix Figure 13. Scatter plot of the number of animal-to-human (red) and human-to-
animal (blue) Markov jumps estimated for the real and ten randomly assigned (A-J) datasets. The circles

represent the mean Markov reward value and the error bars represent the 95% HPD interval.
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Technical Appendix Figure 14. Scatter plot of the number of animal (blue) and human (red) Markov
rewards estimated versus the proportion of samples assigned as human. The circles represent the mean

Markov reward value and the error bars represent the 95% HPD interval.
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Technical Appendix Figure 15. Scatter plot of the number of animal-to-human (blue) and human-to-
animal (red) Markov jumps versus the proportion of samples assigned as human. The circles represent

the mean Markov jump value and the error bars represent the 95% HPD interval.
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Technical Appendix Figure 16. Maximum clade credibility trees of 109 DT160 isolates placed through
the discrete phylogeographic model, with different proportions of isolates assigned as human (blue) and

animal (red).
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